
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1986

Using programming protocols to investigate the
effects of manipulative computer models on
student learning
Elizabeth June Bruene Hooper
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Communication Technology and New Media Commons, and the Instructional Media
Design Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Hooper, Elizabeth June Bruene, "Using programming protocols to investigate the effects of manipulative computer models on student
learning " (1986). Retrospective Theses and Dissertations. 8083.
https://lib.dr.iastate.edu/rtd/8083

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/327?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/795?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/8083?utm_source=lib.dr.iastate.edu%2Frtd%2F8083&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

INFORMATION TO USERS

This reproduction was made from a cofy of a manuscript sent to us for publication
and microfilming. While the most advanced technology has been used to pho­
tograph and reproduce this manuscript, the quality of the reproduction is heavily
dependent upon the quality of the material submitted. Pages in any manuscript
may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which
may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain
missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap­
pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec­
tioning the original, beginning at the upper left hand comer and continu­
ing from left to right in equal sections with small overlaps. E)ach oversize
page is also filmed as one exposure and is available, for an additional
charge, as a standard 35mm slide or in black and white paper format. •

4. Most photographs reproduce acceptably on positive microfilm or micro­
fiche but lack clarity on xerographic copies made from the microfilm. For
an additional charge, all photographs are available in black and white
standard 35mm slide format.*

*For more information about black and white slides or enlarged paper reproductions,
please contact the Dissertations Customer Services Department.

T TAyf-T Dissertation
LJ IVxl Information Service
University Microfilms International
A Bell & Howell Information Company
300 N. Zeeb Road. Ann Arbor. Michigan 48106

www.manaraa.com

www.manaraa.com

8627118

Hooper, Elizabeth June Bruene

USING PROGRAMMING PROTOCOLS TO INVESTIGATE THE EFFECTS OF
MANIPULATIVE COMPUTER MODELS ON STUDENT LEARNING

Iowa State University PH.D. 1986

University
Microfilms

I n tsrnsti O n 3.1 300 N. Zœb Road, Ann Arbor, Ml 48106

www.manaraa.com

www.manaraa.com

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with a check mark •/ .

1. Glossy photographs or pages

2. Colored illustrations, paper or print

3. Photographs with dark background

4. Illustrations are poor copy

5. Pages with black marks, not original copy

6. Print shows through as there is text on both sides of page

7. Indistinct, broken or small print on several pages

8. Print exceeds margin requirements

9. Tightly bound copy with print lost in spine

10. Computer printout pages with indistinct print

11. Page(s) lacking when material received, and not available from school or
author.

12. Page(s) seem to be missing in numbering only as text follows.

13. Two pages numbered . Text follows.

14. Curiing and wrinkled pages

15. Dissertation contains pages with print at a slant, filmed as received

16. Other

University
Microfilms

International

www.manaraa.com

www.manaraa.com

Using programming protocols to investigate the effects

of manipulative computer models on student learning

by

Elizabeth June Bruene Hooper

A Dissertation Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Department: Professional Studies in Education
Major: Education (Research and Evaluation)

Approved:

IiT'CKarge of Major Work IiT'CKarge of Major Work

Fi _ . en ent

For the Graduate College

Iowa State University
Ames, Iowa

1986

Signature was redacted for privacy.

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

ii

TABLE OF CONTENTS
PAGE

CHAPTER I: INTRODUCTION 1
Statement of the Problem 4
Goals of the Study . . • . 5
Research Questions 5
Limitations of the Study 6
Definitions of Terms 7

CHAPTER II: LITERATURE REVIEW 9
Early Research on Programming and Programming Practices 9
Research on the Cognitive Components of Programming 14
Learning Theory and Instructional Methodology 19
New Directions for Programming Education 24
Measuring and Evaluating Fragile Novice Programming Skills ... 27
Summary of Literature Review 29

CHAPTER III: METHODS AND PROCEDURES 32
Subjects 32
Description of Computer-Based Materials 35

MEMOPS 35
CHALLENGER 38
PASTUT 41
MINIPAS 42

Instruments 43
Research Procedure 45
Methods of Analysis 48

CHAPTER IV: . FINDINGS 51
MEMOPS Protocol Findings 52

Student performance on the visible memory tasks 52
Student performance on the hidden memory tasks 58
Summary of MEMOPS findings 62

Posttest 1 Findings 64
Individual student performance on the swap problem 64
Treatment group comparisons for the swap problem 59
Individual student performance on the three-variable sort
problem 73

Treatment group comparisons for the three-variable sort
problem 82

Summary of posttest 1 findings 86
Posttest 2 Findings 88

Individual student performance on the 2-array comparison
problem 89

Individual student performance on the reversal problem ... 91
Treatment group comparisons on the 2-array comparison and
reversal problems 94

Individual student performance on the ascending sort
problem 95

www.manaraa.com

iii

Treatment group comparisons on the ascending sort problem . 104
Summary of posttest 2 findings 107

Summary 109

CHAPTER V: SUMMARY, DISCUSSION, RECOMMENDATIONS AND CONCLUDING
REMARKS 110
Summary 110
Discussion 112

Preconceptions of novices and the learning of programming
concepts 112

Effects of the MEMOPS experience on programming
performance 119

Usefulness of programming histories in studying
programming behavior 125

Recommendations 127
Concluding Remarks 129

BIBLIOGRAPHY 131

ACKNOWLEDGEMENTS 138

APPENDIX A: QUESTIONNAIRE AND MATCHING CRITERIA RESULTS 139

APPENDIX B: MEMOPS PROTOCOLS 147
Explanation of Initial Problem States for MEMOPS Sorting
Tasks 148

APPENDIX C: POSTTEST 1 AND POSTTEST 1 PROTOCOLS 151

APPENDIX D: POSTTEST 2, SCORING PROCEDURE, AND POSTTEST 2
PROTOCOLS 158

www.manaraa.com

iv

LIST OF TABLES

PAGE

TABLE 1. Number of students exhibiting selected solution
features in their initial solution attempts for the
swap problem 69

TABLE 2. MINIPAS history statistics for the swap problem 71

TABLE 3. Number of students exhibiting selected solution
features in their final solution attempts to the
swap problem 72

TABLE 4. Number of students exhibiting selected solution
features in their initial solution attempts to the
three-variable sort problem 83

TABLE 5. MINIPAS history statistics for the three-variable
sort problem 85

TABLE 6. Number of students exhibiting selected solution
features in their final solution attempts to the
three-variable sort problem 86

TABLE 7. Mean achievement scores and standard deviations for
the second posttest 90

TABLE 8. Number of students exhibiting selected solution
features in their initial solution attempts to the
ascending sort problem 105

TABLE 9. MINIPAS history statistics for the ascending sort
problem 106

TABLE 10. Number of students exhibiting selected solution
features in their final solution attempts to the
ascending sort problem 107

TABLE A-1. Distribution of students who took a high school
computing course by experimental group 143

TABLE A-2. Distribution of students who had previously taken a
college computing course by experimental group . . . 143

TABLE A-3. Distribution of students by experimental group and

www.manaraa.com

V

computing experience other than programming (word
processing, drafting, statistical analysis) 144

TABLE A-4. Distribution of students by experimental group and
highest level programming language used in writing
computer programs 144

TABLE A-5. Distribution of students by experimental group and
highest level mathematics courses taken in college . 145

TABLE A-6. Distribution of students by experimental group and
college grade point average 145

TABLE A-7. Distribution of students by experimental group and
expected course grade 146

TABLE B-1. Treatment group protocols for the visible MEMOPS
tasks 149

TABLE B-2. Treatment group protocols for the hidden MEMOPS
tasks 150

TABLE C-1. Treatment group protocols for the swap problem . . . 154

TABLE C-2- Control group protocols for the swap problem 155

TABLE C-3. Treatment group protocols for the three-variable
sort problem 156

TABLE C-4. Control group protocols for the three-variable sort
problem 157

TABLE D-1. Treatment group protocols for the comparison and
reversal problems 166

TABLE D-2. Control group protocols for the comparison and
reversal problems 167

TABLE D-3. Treatment group protocols for the ascending sort
problem 168

TABLE D-4. Control group protocols for the ascending sort
problem 169

www.manaraa.com

vi

LIST OF FIGURES

PAGE

FIGURE 1. Visible memory model for MEMOPS Task 1 (moving the
smallest value to Z) 37

FIGURE 2. Visible memory model for MEMOPS Task 4 (sorting the
values of an array in ascending order) 38

FIGURE 3. Hidden memory model for MEMOPS Task 8 (sorting the
values of an array in ascending order) 39

FIGURE 4. First MEMOPS summary question 39

FIGURE 5. Second MEMOPS stmunary question 40

FIGURE 6. CHALLENGER display 41

FIGURE 7. MINIPAS display 43

FIGURE 8. Sequence of instructional events 46

FIGURE 9. Solution to the MEMOPS swapping task 53

FIGURE 10. A series of MOVE instructions illustrating
sequential filling of an array 56

FIGURE 11. Two swapping techniques for a 3-cell sort problem ... 57

FIGURE 12. A sequence of MOVES illustrating a "keeps best"
algorithm for locating the smallest value stored in
an array 59

FIGURE 13. A correct solution and one exhibiting the "wrong-
way" assignment error 57 *

FIGURE 14. Three-variable sort problem: efficient solution 74

FIGURE 15. Three-variable sort problem: isolate all cases
solution 74

FIGURE 16. Three-variable sort problem: complex shuffle
solution 75

FIGURE 17. Solution to the 2-array comparison problem 90

www.manaraa.com

vii

FIGURE 18. Single index solution to the reversal problem 92

FIGURE 19. Two-variable solution to the reversal problem 93

FIGURE 20. Graphical illustration of a selection sort 97

FIGURE 21. Pascal code for implementing a selection sort
(ascending order) 97

FIGURE 22. Graphical illustration of a bubble sort 98

FIGURE 23. Pascal code for implementing a bubble sort
(ascending order) 99

www.manaraa.com

1

CHAPTER I: INTRODUCTION

Computer technology has become a vital part of the formal and

informal education of our youth. Educators and students alike view

computer skills as essential to success in a wide variety of careers.

While not all careers will require an "expert" level of programming

skills, a large number of individuals will need to communicate their

intentions to the computer via a programming language.

Developing a functional knowledge of programming for an ever-

increasing, diverse group of students has become one of the major

challenges of computer science education. Many studies have been

conducted in an effort to examine what can be done to facilitate the

learning of computer programming. Properties of languages,

characteristics of learners, and innovative instructional techniques

have been studied extensively but results have been less significant

than expected (Sheil, 1981). The question remains unanswered as to

how educators can better help students learn about computers and

computer programming.

One obvious reason that so many students fail at learning to

program is because programming involves a complex set of skills.

According to Pea and Kurland (1984) programming consists of a set of

problem-solving activities including 1) understanding the task the

program is to accomplish, 2) planning a programming strategy that will

accomplish the task, 3) implementing the plan via a programming

language, and 4) debugging the plan and the program code. In order to

accomplish these activities, programmers must draw upon a large body

www.manaraa.com

2

of ill defined knowledge. Identifying this knowledge and the

organization or structure of this knowledge in memory may be the keys

to unlocking the mysteries of becoming a successful programmer. What

appears to be needed are more effective instructional methods that

help novice programmers acquire and organize the knowledge needed for

programming computers.

Probably the most effective instructional activities currently

being used in introductory programming courses are the programming

assignments themselves. Lectures and textbooks provide the students

with information about the syntax and semantics of a particular

programming language. The programming assignments, however, require

the student to give meaning to this information. Although the

programming assignments may be a good test of a student's ability to

apply information, they are often frustrating because so much is

involved. Not only must the student write programming code that will

solve the task at hand, but she must also enter it into the computer,

isolate and remove syntax errors, and determine whether the program

does indeed satisfy the assignment. Most students are so consumed by

this process that they fail to grasp many of the concepts that could

be fundamental to a meaningful understanding of programming.

Instructional activities that avoid some of the "mechanics" of getting

a program to run and allow the student to focus on basic programming

concepts should expedite the learning process.

A second reason so many students may fail in learning to program

may be that they do not possess appropriate prerequisite knowledge

www.manaraa.com

3

about how computers work. According to Mayer (1981) some knowledge

about how computers work and what they can be instructed to do may be

necessary for the meaningful learning of many programming concepts.

In a series of studies, Mayer (1981) reported that students given a

simplified static model of the operational components of a computer

(described in familiar terms such as windows, scoreboards, and

recipes) performed better on more difficult programming tasks than

students who had not received the model. According to Mayer, allowing

novices to "see the works" assisted their encoding process such that

the information gained was encoded in a more coherent and meaningful

way. Implicit in Mayer's findings is an indication that carefully

designed, simplified, interactive models of computer operations and

concepts should be a productive and efficient way to foster the

meaningful learning of programming. The computer itself may be the

most effective tool for establishing just such an environment.

In addition to being an object of instruction, computers can be

mediums of instruction. For almost two decades now educators have

been exploring the role computers can play in the teaching/learning

process. Computers have been programmed to tutor, provide drill and

practice, and simulate real-world events. Early research efforts in

computer-assisted instruction (CAI) focused mainly on the feasibility

of using computers to deliver instruction. These efforts did little

more than substantiate the finding that students could learn from

computers (Kearsley, 1977). When tested against instructional

strategies that did not incorporate usage of the computer, computing

www.manaraa.com

4

strategies produced performance scores that were similar to the scores

of students who learned from other methods (Fletcher and Atkinson,

1972). Although a few studies documented a savings in learning time,

the high cost of computer usage at that time usually neutralized the

time-saving factor. Research prior to the late seventies failed to

indentify instructional arenas in which the computer was clearly

superior to traditional methodologies.

Instructional computing research in its infancy was extremely

disappointing in view of the computer's versatility. Although it was

documented that the computer could be an effective tutor and drill and

practice device, very little research explored the computer's ability

to perform more challenging instructional tasks. Only recently have

educators begun to document the computer ' s capacity to act as an

interactive environment that can be used by students to test new ideas

and evaluate previously acquired models of understanding. Not only do

these environments afford students the opportunity to "debug" their

thinking (Papert, 1981; White, 1984), but they can also be used to

study the roles that knowledge and knowledge acquisition play in the

learning process.

Statement of the Problem

Two educational challenges, learning about computers and using

computers to leam, logically merge in computer science education- In

practice, however, this has not been the case. Computer science

educators have only recently started to develop learning environments

www.manaraa.com

5

that promote the acquisition of programming skills. Previously, this

aspect of learning was only addressed by requiring students to write

computer programs. Unfortunately, the research procedures for

evaluating the effects of the new learning environments are lacking

and the processes involved in learning to program are not yet

understood. Thus, the problem to be investigated in this study was

the fostering and documenting of the processes by which novices learn

computer programming.

Goals of the Study

There were two related primary goals of the study. One was to

investigate the effects of a manipulative computer model on novice

learning of semantic knowledge and procedural literacy. The second

was to determine whether programming protocols were useful tools in

analyzing information about the procedural literacy aspect of computer

programming. In the process of accomplishing these primary goals, a

third goal of documenting the detailed behaviors of novice programmers

as they attempted programming tasks was achieved.

Research Questions

There were three basic research questions addressed by the study.

These were:

1. What are some of the observable programming behaviors

of novices who are learning programming?

www.manaraa.com

6

2. Do students who use a manipulative model before language

instruction program differently than students who don't

use the manipulative model?

3. Do programming protocols provide information useful in

assessing aspects of student learning that cannot be

measured using a paper-and-pencil test?

Limitations of the Study

The study was conducted in view of the following limitations:

1. It was necessary to collect and analyze a large amount of data

for each participant in order to document the processes involved

in learning programming. The scope of this task severely limited

the size of the sample which could be studied.

2. The processes involved in programming are not well-defined;

therefore, post hoc analyses based upon the presence or absence

of solution features identified by the researcher were performed.

3. The panel of judges that classified the behaviors of the novice

programmers consisted of only two individuals, tne researcher and

another person who had extensive programming instruction

experience.

4. The programming behaviors on a limited number of programming tasks

were analyzed.

www.manaraa.com

7

5. The experimental subjects were from a single discipline.

6. Only one instructional simulation was used as the experimental

treatment.

Definitions of Terms

Protocols - the history of a Pascal program or MEMOPS solution.

Protocols of novice programming behavior for the posttest

problems documented specific solution features of initial and

final coding efforts as well as any intervening online

programming problems. Protocols for the MEMOPS tasks docu­

mented intrinsic features of a student's solution algorithms.

Solution features - selected characteristics of a student's programming

solution that were documented.

Algorithm - a solution procedure, plan, or approach that a student

attempted to implement in solving a programming task.

Semantic knowledge - A multi-leveled set of concepts important for

programming which have been "abstracted through experience

and instruction . . . and are stored as general, meaningful

sets of information that are more or less independent of the

syntactic knowledge of a particular programming language or

facility" (Shneiderman, 1980, p. 47).

www.manaraa.com

8

Procedural literacy - "The process by which one determines the effect of

a set of instructions, or alternatively, the set of instruc­

tions that will achieve a particular effect. It presumes

not only the notion of information as a distinct entity,

but also the separation of processor and instructions, a

distinction between instances and general rules, and special­

ized versions of a whole collection of concepts . . . other­

wise encountered only in mathematics" (Shell, 1982, p. 83).

Tacit knowledge - . . knowledge that one needs in a given field but

that is usually not explicitly taught or even verbalized"

(Sternberg, 1986, p. 142).

www.manaraa.com

9

CHAPTER II: LITERATURE REVIEW

In this chapter the research literature from computer science

education and the psychology of learning which is germane to this

study is reviewed. Initially, a brief history of the early research

on computer programming is presented. This is followed by a summary

of the research on the cognitive components of programming and general

learning theory. In the final sections of this chapter new directions

for programming education and considerations for evaluation are

discussed.

Early Research on Programming and Programming Practices

Since the late 1960s a wealth of research has been conducted in

an effort to investigate ways to produce more efficient programmers.

The very first studies investigating programming stemmed from machine-

related issues. Topics such as parsing ease, execution efficiency,

and implementation of different character sets (Shneiderman, 1976) for

the most part dealt only superficially with human factors involved in

programming. One noted study, however, did focus on programming

performance as a human activity. Grant and Sackman (1967)

investigated programmer performance under interactive and batch

processing conditions. Twelve experienced programmers coded and

debugged two programs using either an interactive or batch processing

facility. Results of the study slightly favored time-sharing for the

debugging process only. However, the investigators noted that

www.manaraa.com

10

individual variability in programming performance was the more

striking finding.

The use of flowcharts, commenting, indentation, and meaningful

variable names have all been advanced in programming instruction as

desirable and beneficial in aiding programming performance.

Empirically, the evidence supporting the use of these programming

practices is at best tentative. Shneiderman et al. (1977) evaluated

the utility of detailed flowcharting as an aid to various programming

tasks and found no statistically significant difference between

flowchart and non-flowchart group performance. Although Weissman

(1977) found some evidence that well-placed, meaningful comments

improved student's speed in tracing execution, Sheppard et al. (1979)

found that commenting had no effect on accuracy of or time taken to

modify FORTRAN code.

Indentation is a technique used by many programmers to present

code in a much more readable format. However, research indicates that

this technique does not measurably improve programming performance for

a number of programming subtasks. Weissman (1977) found that

indentation did not improve student performance on hand simulation

tasks. Love (1977) found that comprehension (as measured by program

reconstruction activities) was not improved through the use of

indentation. Shneiderman and McKay (as reported in Shneiderman, 1980)

investigated the ability to locate and modify programming errors in

indented and unindented versions of two Pascal programs. In

www.manaraa.com

11

accordance with the other studies, there was no performance advantage

for groups using the indented versions.

Findings regarding the use of meaningful variable names in

programs are also inconclusive- Newman (as reported in Shneiderman,

1980) found that students given programs with non-mnemonic variable

names performed better on a program comprehension test than did

students given mnemonic variable names. Shneiderman (1980) reported

that while the use of mnemonic variable names did help novice

programmers comprehend a program, they did not appear to help

intermediate-level programmers locate errors or modify programs.

Likewise, Sheppard et al. (1979) could find no evidence that the use

of mnemonic variable names improved the recall performance of

experienced programmers.

Besides examining common programming practices, numerous studies

have examined the effects of language features on programming

performance. The recent structured programming debate has spawned

many investigations concerning language control structures. Again,

the results of these studies have been inconsistent and disappointing

in terms of measuring changes in programming performance.

Sime et al. (1977) conducted experiments with novice programmers

on the three common styles of conditional statements found in

programming languages. In general, they found that the use of nested

conditional structures (IF...THEN Begin...End ELSE Begin...End;

IF...NOT...;) led to the production of the highest number of logically

correct programs but were the most difficult to debug. The jump

www.manaraa.com

12

conditionals (IF THEN GOTO...) were easier to debug, but were

associated with more logic errors and incorrect programs. Similar

results were later obtained by Green (1977) for experienced

programmers. Miller (1974) found that nested conditionals were much

more difficult to comprehend for novices than were jump conditionals.

The use of higher-level control structures such as DO-loops and

WHILE-loops to replace lower-level IF tests and GOTO statements was

studied by Weissman (1977), Lucas and Kaplan (1975) and Sheppard et

al. (1979). Weissman measured comprehension and programming

performance of both novice and experienced programmers and found no

reliable differences for the use of structured constructs over the

simpler constructs. Lucas and Kaplan discovered that although

students who were only familiar with the GOTO types of structures

struggled in attempting to write GOTO-less code, modification tasks on

GOTO-less code were easier. Love (1977) and Sheppard et al. (1979)

found that for both experienced and unexperienced programmers

structured programs were much easier to recall than non-structured

versions of programs. Although "chaotically" structured programs were

significantly more difficult to recall and modify, no differences

could be found between groups using the different kinds of structured

control mechanisms.

Youngs (1974) and Gannon (1976) explored the types of errors

programmers made based upon the language features utilized in

different programming languages. Youngs noted that over one quarter

of all programming errors occurred in assignment statements, but

www.manaraa.com

13

conclusions about other language features could not be made as the

languages under investigation implemented different features. Gannon

attempted to control the differences between languages by altering

nine mutually independent features of one language so that specific

error comparisons could be made. Even though the overall error rates

between groups of students using either the standard or modified

version of the language did not differ, Gannon found that the use of

the assignment feature as an operator caused more problems than its

more traditional use as a statement.

The results of the early studies on innovative programming

practices and language features that have been reviewed here as well

as numerous others reported elsewhere (Shneiderman, 1980; Sheil, 1981;

Du Boulay and O'Shea, 1981) indicate that innovations have had little

measurable effect on programming performance. Reasons why these

innovations failed are no doubt many. However, fundamental to their

failure may have been a naive view of the nature of programming. Much

research has been based on the view that programming consisted of a

series of tasks and that these tasks could somehow be simplified by

the use of flowcharts, better conditional statements, or some other

innovative practice. Such a view fails to take into account the

complex nature of the activity and the cognitive components that

underlie programming skills. According to Sheil (1981),

"Most psychological research on programming assumes

that different programming tasks vary in difficulty

and that the level of difficulty is an attribute of

www.manaraa.com

14

the task. The motivation for much of this work is

the belief that the difficulty of large tasks is an

aggregation of the difficulties of many component

tasks Such assumptions are false for programming.

They give no account of the most salient single fact

about programming, which is that the difficulty of

programming is a very nonlinear function of the size

of the problem The simple aggregations of

difficulty model provides no mechanism by which such

nonlinearity could be generated" (p. 117).

Research on the Cognitive Components of Programming

Programming, like any other expert behavior, can be characterized

by high level skills and complex cognitive structures. Recent

research efforts that have examined the cognitive processes underlying

computer programming are consistent with studies of other expert

behaviors (Chase & Simon, 1973; Larkin et al., 1980). They indicate

that an extensive amount of accessible knowledge is utilized in

programing.

Brooks (1977) constructed an information-processing model of

programming behavior based upon the transcribed protocols of

experienced programmers engaged in various programming activities.

Using the protocols. Brooks identified nearly 100 productions or rules

utilized by programmers in code generation. From these findings.

www.manaraa.com

15

Brooks predicted that the number of rules needed to represent all of

an experienced programmer's knowledge must be on the order of "tens or

hundreds of thousands".

According to Shneiderman (1976), expert programmers possess high-

level semantic knowledge that enables them to organize information

into meaningful "chunks". Shneiderman attributed the recall results

of his shuffled program studies to these "chunking" abilities of the

experienced programmers. His findings indicated that the more

experienced programmers were able to recode and group language

statements such that several could be remembered as a "chunk".

Nonexperienced programmers, however, could not remember several

statements as a single unit. Instead, they remembered individual

statements as units and therefore could not recall as much of the code

as the experienced programmers did. Adelson's (1981) findings

regarding experience and automation of programming constructs

supported Shneiderman's views.

Atwood and Ramsey (1978) conducted several exploratory

investigations in an effort to collect information about the mental

representations of computer programs. They hypothesized that

debugging requires programmers to form hypotheses about the functions

of individual program segments and the hierarchical relationships

between these functions. The investigators predicted that it would

take programmers longer to find bugs that were embedded deeper in the

hierarchy than bugs which were located in surface levels of the

hierarchy. Furthermore, they felt that the prepositional hierarchy

www.manaraa.com

16

formed during initial debugging attempts would be useful for

subsequent attempts to locate different bugs in the same program and

therefore decrease the time needed to locate the new bug.

Results of the Atwood and Ramsey study indicated that depth in

the underlying propositional hierarchy and serial positioning (number

of propositions preceding the one with the error) did appear to

influence the participant's debugging performance. More specifically,

serial positioning affected the time taken to locate an error while

depth in the hierarchy affected the probability of finding the error.

Since debug times consistently decreased for all students on the

second program, Atwood and Ramsey proposed that the propositional

macrostructures formed during the debugging of the first program were

useful in debugging the second program. According to the

investigators, these macrostructures served as sets of expectations

about what the program should do and how the program would do it.

McKeithen, Reitman, Rueter, and Hirtle (1981) explored programmer

macrostructures and chunking abilities in greater detail- Based upon

the belief that programming statements consistently recalled as a

group could be considered chunked together in memory, the

investigators hypothesized that chunks recalled in close proximity

might indicate the higher organizational components involved in

programming. In a preliminary experiment, McKeithen et al- compared

the differences in recall ability of expert and novice programmers who

viewed either a coherent or a scrambled version of a computer program

on five separate trials- Results on the scrambled version were

www.manaraa.com

17

consistent with those of Shneiderman (1976) in that very few lines of

the scrambled program were recalled by either the novices or the

experienced programmers. For the coherent program, experienced

programmers recalled significantly more lines of code than the non-

experienced programmers and a close inspection of the recalled lines

revealed characteristic patterns of recall. While inexperienced

programmers recalled only short lines of code (BEGINS and ENDs), the

more experienced programmers consistently recalled 1) the BEGIN and

END statements, 2) the beginning statements of nested loops that read

in matrix values and 3) parts of other loops that exchanged values and

began output sequences.

A second study was then conducted to examine the differences in

the way subjects organized their recall. Subjects of different

programming skill levels were given a deck of cards containing

unfamiliar ALGOL W reserved programming words and instructed to leam

them. Later, they were asked to recall the words without the aid of

the cards under both cued and non-cued testing situations. The recall

orders from each subject were analyzed using an algorithm that

searched all of a subject's recall strings for groups of items that

consistently appeared contiguously, regardless of order. These groups

were then arranged to form a tree with branches descending from the

original string to mark the consistency and direction of the recalled

groups. Results of the analyses indicated that the organization of

the recall performances did differ according to programming

experience. Mnemonic techniques such as grouping words according to

www.manaraa.com

18

length, initial letter, and common language sequences were used by the

non-experienced programmers. More meaningful organizations reflecting

an understanding of programming constructs were used by the more

experienced programmers.

Although the results of the McKeithen et al. studies do not prove

that certain mental organizations produce programming expertise, they

do suggest that subjects with an existing skill level seem to possess

a particular common organization. Similarities between skill level

and debugging strategies have also been noted. Results of a study

conducted by Jeffries (1982) suggested that expert programmers

performed much deeper readings of programs than did non-experienced

programmers. These "deep" readings involved searching out the flow of

control and consistently conducting global searches for the program's

organizational structure. Novices, on the other hand, took "surface"

readings of the program by conducting line by line searches. Jeffries

attributed this difference not only to the experts ability to view

chunks of code as instantiations of familiar programming tasks, but

also to their ability to simulate computer operations in response to

specific problem inputs.

Whereas the earlier studies on programming practices and language

features were concerned with programming efficiency, the more recent

studies have been concerned with clarifying the cognitive aspects

underlying programing skill. Several studies have emphasized the

complexity of the programming process by examining in greater detail

nonexperienced and experienced programmer behavior. While these

www.manaraa.com

19

studies may be somewhat useful in identifying some of the components

of expert programming skill and providing goals for programming

education, they do not directly address the issue of how learning

experiences could and should be organized to help the novice acquire

programming knowledge. This issue requires programming educators to

take better advantage of recent developments in the fields of

cognition and educational psychology if they wish to experience

greater success in educating novice programmers.

Learning Theory and Instructional Methodology

Learning is not a passive activity. It requires the processing

and assimilation of information if it is to be transferable and useful

in problem-solving activities not explicitly taught. Bransford (1979)

and Mayer (1981) define meaningful learning as integrated learning, a

"process in which the learner connects new material with knowledge

that already exists in memory" (p. 121). In similar fashion, Bruner

(1966, 1973) has declared that organizing what is encountered is a

necessary condition for transforming information for better use.

Several advances in cognitive and educational psychology indicate that

in order for meaningful learning to occur, instructional techniques

must 1) take into account the current models and systems of knowledge

possessed by learners at the time of instruction, and 2) tap into any

prerequisite knowledge that might facilitate the assimilation of new

information.

www.manaraa.com

20

In his early classics. The Process of Education and Toward a

Theory of Instruction, as well as more recent writings Bruner has

maintained that a principle factor influencing meaningful learning is

a student's existing cognitive structure. He advocates discovery in

learning, maintaining that such an emphasis requires the learner to

become a constructionist, to organize what is encountered in a manner

designed to discover regularity and relatedness. Four general themes,

concerning the nature and development of the student's cognitive

processes, are emphasized in his teachings. These include 1) how a

student's knowledge system might be made central to teaching, 2)

learner readiness, 3) the nature of intuition and how educators should

assist in its development, and 4) the desire to leam and how it could

be stimulated. Nearly three decades of discovery strategy research,

however, have been unable to produce consistent replicable results

regarding the specific benefits of discovery in learning (Wittrock,

1966; Farhnam-Diggory, 1972).

Like Bruner, Ausubel (1968) also believes that the learner's

existing cognitive structure influences subsequent learning. He has

proposed the use of advance organizers to draw out the components of

the learner's existing structures that could be particularly relevant

to the situation at hand. By serving as both an anchoring and a

linking mechanism, Ausubel claims that advance organizers would assist

learners in making more useful and transferable connections between

what the learner already knows and what is about to be learned. In

short, advance organizers may facilitate meaningful learning by 1)

www.manaraa.com

21

calling attention to and building upon knowledge already present in

the learner's cognitive structure, 2) providing a skeleton upon which

new information could be anchored, and 3) rendering unnecessary

student learning by rote memorization.

A wide variety of studies have been conducted to investigate the

effectiveness of advance organizers. Reviews of early efforts report

a lack of consensus concerning their benefits (Barnes and Clawson,

1975; Hartley and Davies, 1976). More recent reviews (Ausubel, 1977;

Mayer, 1979b) suggest that organizers may have the most effect in

situations where the learner is inexperienced and unlikely to possess

useful prerequisite information, or for tasks requiring creative

solutions to solve unfamiliar problems (Mayer, 1981). Working with

environments unfamiliar to the learner, Siegler and White found that

the interaction between knowledge and learning is even more important

than either Bruner or Ausubel indicated.

Siegler (1983a, 1983b) conducted a series of studies

demonstrating that what a learner knows influences the conditions

under which learning can occur. In each study, he utilized a rule-

assessment approach in designing situations that would explicitly test

a student's understanding of the concepts of time, speed, and

velocity. First, errors patterns were studied and used to establish

the rules that the students seemed to be applying in attempting to

solve difficult problems. Next, the students were exposed to learning

sessions consisting of problem sets that forced them to re-evaluate

their current knowledge systems. Although many students were able to

www.manaraa.com

22

alter their rules based upon these confrontations, Siegler noted that

others could not. Subsequent analyses of videotapes revealed that

while some students failed to consider some of the critical dimensions

of the problem, others appeared to have encoded these dimensions in

ways that were not useful for forming more adequate rules. Based upon

this additional information, Siegler designed unique instructional

tasks that would facilitate a more useful encoding of the critical

dimensions of the problem. The performance of students receiving the

encoding instruction indicated that they did adopt more advanced

rules.

One of the educational implications of Siegler's work is the need

for experiences that allow students to confront the inadequacies of

their knowledge. White (1984) developed an environment that not only

allowed her to study the knowledge systems of physics students, but

also forced the students to examine these systems. Based upon

previous research suggesting that students incorrectly extend beliefs

about the motion of baseballs and cars to frictionless situations.

White designed a sequence of computer games that required students to

apply impulse forces to objects in order to alter their speed and

direction of movement. Pretest results verified that students who had

just studied Newton's laws possessed misconceptions and were unable to

successfully solve problems focusing on the implications of the laws.

Posttest results indicated that those students exposed to White's

Newtonian microworld were able to answer nore questions correctly than

did students not exposed to the games. Furthermore, input records

www.manaraa.com

23

collected by the computer as students played the games demonstrated

that many of the students did indeed struggle between what their naive

intuitions told them and what their physics knowledge told them.

Many other types of concrete models and manipulatives (objects

such as bundles of sticks, coins, or blocks that allow students to

make computational procedures more concrete) have also been effective

in facilitating learning (Brownell and Moser, 1949; Branch, 1973;

Resnick and Ford, 1980). West and Fensham (1975) found that concrete

models used as advance organizers improved examination performance for

low-ability physics students. Scandura and Wells (1957) used

mathematical games as advance organizers to strengthen existing

intuitions about mathematical groupings. Lesh (1975) found that the

use of videotaped models as organizers for motion geometry produced

higher achievement scores than treatments that did not use the

organizers. Whether manipulatives or concrete models are used prior

to instruction to establish frameworks for assimilating new knowledge

or used after instruction to explore the hidden implications of

abstract constructs, they do appear to greatly benefit instruction and

learning.

The efforts of cognitive theorists and educators such as Ausubel,

Bruner, Siegler, and White offer many valuable guidelines for the

design of meaningful learning activities. Fundamental to these

guidelines is the belief that existing knowledge plays an important

role in future learning. Instructional tasks designed by White and

Siegler were based upon what was known about the mental models and

www.manaraa.com

24

current systems of knowledge possessed by beginning physics students

and young children learning about time, speed, and velocity. The

instructional methods that grew from this knowledge provided a

framework that allowed learners to actively assimilate newly acquired

knowledge in a more meaningful context. Similar approaches have

recently been initiated for fostering the meaningful learning of

programming.

New Directions for Programming Education

According to Pea and Kurland (1984) programming is an extremely

complex intellectual activity. It involves a set of problem-solving

activities that include 1) understanding the task the program is to

accomplish, 2) planning a programming strategy that will accomplish

the task, 3) implementing the plan via a programming language, and 4)

debugging the plan and the code used to implement the plan. Studies

examining experienced programmer behavior indicate that programmers

apply these procedures recursively until their program works properly.

In so doing, it has been suggested that expert programmers draw upon

an extensive, highly organized body of knowledge consisting of

syntactic and semantic pieces of programming information as well as

sets of procedural skills or heuristics useful in applying this

information. Of particular note is the fact that these cognitive

qualities appear to be the consequence of an active constructive

process that is able to capture the lessons of program writing

experience rather than the effects of particular programming

www.manaraa.com

25

practices, language features, or traditional methods of formal

instruction.

Du Boulay and associates (Du Boulay and O'Shea, 1981; Du Boulay,

O'Shea, and Monk, 1981) characterize the basic approaches toward

programming instruction as "black box" and "glass box" approaches. In

the "black box" approach, the operations of the computer remain hidden

to the learner so that the learner has no idea of what goes on inside

the computer. In contrast, the "glass box" approach provides a

mechanism by which learners can study the relationship between

programming statements and computer operations. With this in mind. Du

Boulay and colleagues designed an interactive model of a simplified

computer that permits learners to view selected parts and processes of

a programming language in action. They have hypothesized that such a

model would assist the user in developing intuitions about what

transpires inside the computer which may, in turn, foster the

meaningful learning of programming.

Mayer (1981) has also hypothesized that knowledge of how a

computer works is necessary for the meaningful learning of

programming. In a series of studies, students who were given a

concrete model of a computer with explanations of its main components

in terms of input/output windows, a memory scoreboard, and a program

list and pointer arrow performed better on more difficult programming

tasks than did students who were not exposed to the model. According

to Mayer, allowing novices to "see the works" assisted their encoding

process such that the information gained was encoded in a more

www.manaraa.com

26

coherent and meaningful manner. Mayer's findings suggest that 1)

static models of the computer can produce a framework for assimilating

new information concerning computers and the programming process and

2) models presented before formal instruction on the syntax and

semantics of a programming language are more effective than models

presented after instruction.

If the view that programming consists of syntactic and semantic

knowledge as well as procedural skills is correct, novice programmers

are confronted with at least three major tasks. The novice must 1)

learn the syntax of a language, 2) build up a store of coding segments

that represent common programming subtasks, and 3) acquire the

procedural skills necessary to be successful at programming. The

learning of the syntax of a language is relatively trivial compared to

acquiring semantic programming knowledge and developing procedural

skills. While syntax may be satisfactorily learned by rote,

automation of programming segments and procedural skills require more

constructive, meaningful learning.

Implicit in Mayer's findings is an indication that carefully

designed, simplified models of computer operations and concepts should

be a productive and efficient way to encourage student acquisition of

semantic programming knowledge. What could be an even more powerful

learning environment, however, is an interactive model that would

allow the student to actually confront some of his intuitive beliefs

about programming and develop the procedural skills that seem so vital

to the discipline. If used prior to formal instruction, such an

www.manaraa.com

27

environment might prove even more useful in establishing foundations

for formal instruction on programming. Furthermore, such an

environment might be useful as a data acquisition system to further

our understanding of the development of some of the cognitive

processes underlying programming success. The task of designing,

building and incorporating models of this nature into the

instructional process is a major and important challenge. The task of

evaluating their effectiveness in a deep and meaningful manner is an

even greater challenge.

Measuring and Evaluating Fragile Novice Programming Skills

Measurement is a process that attempts to obtain a quantified

representation of the degree to which a pupil reflects a particular

trait (Ahmann and Clock, 1975). Paper-and-pencil tests are the most

common measurement devices used to produce these quantitative

representations, although there are many others (performance tests,

rating and ranking scales, anecdotal records, questionnaires, etc.).

In fact, their very value to the evaluation process is producing

quantifiable evidence that, when considered alongside qualitative

evidence and some other highly subjective impressions, contributes to

the value judgements we call evaluations.

Quantifying with some type of precision the degree to which a

student possesses a trait is much easier for concepts in which forums

of agreement exist. Specifying the criteria for goal-attainment

requires not only advance knowledge of how one can achieve the goal.

www.manaraa.com

28

but also agreement concerning the criteria used to determine success

in goal-attainment. Regarding programming performance, such a forum

of agreement exists only in terms of "Does the program work?" and

perhaps "Does the program work efficiently?". Until more is known

about the discipline of programming, more profound forums of agreement

will probably not be forthcoming.

The cognitive components and processes underlying novice

programming behavior are probably a fragile and unreliable set of

knowledge structures. Even though programming is founded on a common

object, the computer, its acquisition and meaning may be unique to

each individual student based upon her previous experiences. For this

reason, the use of paper-and-pencil tests may be inadequate. Even an

analysis of a "one-shot" attempt to write a program or a segment of a

program has not proven to be a very productive measure of the

processes involved in programming. What appears to be needed is a

means of soliciting and collecting entire programming sessions which

can be analyzed both individually and collectively. The student

should be permitted to present a solution, receive feedback which is

meaningful within the programming environment, and revise the solution

until satisfaction or frustration is reached. Data collected as a

student engages in programming should provide information concerning

the novice's intermediate thought processes and thus more accurately

reflect programming knowledge than would an answer to a written test

question.

www.manaraa.com

29

The methodology of studying programming behavior by collecting

every syntactically correct version of a program is not new. Online

records of programming efforts have been extensively utilized in

studying compiler error messages in an effort to generate more

meaningful messages (Shneiderman, 1980). However, the literature

reports fewer instances of using this methodology to study the more

intellectually taxing aspects of programming.

One investigation that did attempt to study the thought processes

of programmers by collecting all syntactically correct versions of

programs was conducted by Bonar, Ehrlich, Soloway, and Rubin (1982).

Using a computer program called the BUG FINDER, the investigators

located the semantic and pragmatic errors in each program version.

These errors were then used to develop a catalog of programming errors

and to identify 1) patterns of errors over an entire semester, 2)

stereotypic correction methods employed by the students and 3)

individual programming styles. Although the investigators caution

that the implementation of this methodology required significant

resources, they were encouraged by their success in studying

psychological aspects of programming that could not be studied via

written solutions to test questions.

Summary of Literature Review

Numerous directions have been taken in programming research in an

effort to leam more about the nature of programming and the cognitive

processes underlying programming success. These directions have

www.manaraa.com

30

included studying the effects of innovative practices and language

features on programming performance as well as investigating aspects

of expert programming behavior. Wl)ile these efforts have been useful

in identifying some of the features of programming skill and can serve

as goals for programming education, they do not directly address two

important instructional issues, namely how learning experiences should

be organized to help the novice acquire programming knowledge, and

specifically what novices must learn in order to achieve programming

success.

Recent advances in the fields of cognitive psychology have

indicated that what is already known may influence subsequent

learning. Instructional techniques that build upon this aspect of

learning have been successful in facilitating more meaningful learning

of cognitively demanding material. Three of these techniques are 1)

using manipulative objects to make abstract concepts more concrete, 2)

using advance organizers to prepare the learner for subsequent

information and 3) creating models of reality that force the learner

to confront incorrect intuitions. The computer's ability to model

itself provides a unique environment for implementing similar

techniques that could facilitate learning, specifically, the learning

of programming.

The development of computer environments designed to facilitate

the acquisition of programming knowledge is a challenging task. But

an even greater challenge is evaluating the effectiveness of these

environments in a meaningful manner. Evaluation must be based upon an

www.manaraa.com

31

analysis of sijfasequent programming performance. Since programming

normally takes place in an interactive environment, written solutions

to test questions may not adequately measure the subtle effects of

such environments on programming performance, â suggested alternative

is to allow novices to program solutions to test problems. Besides

reflecting a more normal environment for programming, this methodology

allows data to be collected that may be useful not only in clarifying

knowledge exhibited by a written solution, but also in studying the

novice's intermediate thought processes. This approach does, however,

require significant resources.

www.manaraa.com

32

CHAPTER III: METHODS AND PROCEDURES

This study resulted from a need to resolve the discrepancies

between the theoretical instructional potential of the computer and

the multitude of applications which have been produced. It was

developed in full recognition of probable differences between

simulations and drill and practice applications, testing for process

and testing for recall, and learning computer programming and learning

a subject like spelling. The study was intended to be but one small

step in determining the ultimate role of computers in the learning

process.

Because the study delves into the emerging area of cognitive

psychology, employs newly developed instructional software packages,

investigates the relatively new subject of computer programming and

relies on the results of untested evaluative instruments, it can only

be viewed as descriptive research. For this reason, the study is

based on research questions rather than hypotheses. In addition, the

methodology that is employed was designed to reveal characteristic

behaviors. The intent of the study is to provide the ground work on

which more formal research can be based.

Subjects

The participants in the study were those students who had

enrolled in an introductory computer applications course offered

through the Industrial Education and Technology department at Iowa

State University in the fall of 1985. The introductory portion of

www.manaraa.com

33

this course was designed to familiarize students with the Pascal

programming language. The latter portion required the use of Pascal

in developing programs for industrial applications.

A ten-item questionnaire was developed to collect descriptive

data concerning each participant's educational background and previous

programming experience. Information requested from the students

included age and sex, year in college, previous computing experience,

computer ownership, mathematics background, college grade point

average, course expectations, and reasons for enrolling in the course.

A copy of the questionnaire is provided in Appendix A.

Results of the questionnaire revealed that the average age of the

participants was 21.9 years with a range of 20 to 31 years. Thirty-

five of the thirty-six participants were male industrial education and

technology majors. Four students were currently classified as

sophomores, sixteen were juniors, thirteen were seniors, and three

were graduate students. Twenty-six students stated that they were

taking the course because it was required, although several also

stated that learning to program would benefit their future careers.

The computing experiences of the students varied extensively.

Slightly more than one-third (13) of the students stated on the

questionnaire that they had taken some type of high school computer

literacy or programming course. Twenty students stated that they had

previously taken programming or computer literacy courses in college

prior to enrolling in the present course. Of the students who

indicated that they had done programming, six had written BASIC or

www.manaraa.com

34

LOGO programs, ten had written FORTRAN programs, and six had written

either Pascal, COBOL, or PL/1 programs. Fourteen students indicated

that they had never programmed a computer. Several of the

participants (14) also reported having used computers for word

processing, statistical analysis, and engineering design (CAD). Nine

students stated that they owned a microcomputer.

Unlike the variety of computer experiences possessed by the

participants, most of the students had taken similar mathematics

courses. Thirty-five of the thirty-six students took at least three

high school mathematics courses (Algebra I, Algebra II, and Geometry).

Twenty-six students indicated that they had also studied either

trigonometry and/or calculus in high school. In college, a majority

of the students continued to study mathematics. Eight students

reported that they had taken a refresher course in algebra and/or

trigonometry. Twenty-seven students indicated that they had taken one

semester of calculus in college and three of these students stated

that they took additional calculus courses.

The majority of the participants in the study (21) had a college

grade point average between 2.00 and 2.49 on a 4-point scale. Another

nine students had averages between 2.50 and 2.99. Five students had

averages above 3.00 and one student had an average below 2.00.

Thirty-two students, however, expected to earn an "above average"

grade in the course in which this study was conducted; twenty-four

expected to receive at least a "B" and eight students expected to earn

an "A".

www.manaraa.com

35

In summary, the majority of the participants in the study were

male, junior or senior industrial education and technology majors. In

high school these students had taken approximately four years of

mathematics that included two algebra courses, a geometry course, and

an advanced mathematics course. In college, the students took at

least one semester of calculus. Computer experiences ranged from none

to extensive, with fourteen of the students never having programmed a

computer prior to enrolling in the course. The college grade point

average for the majority of the students was between 2.00 and 3.00.

Nearly all of the students expected to receive an above average grade

in the present course.

Description of Computer-Based Materials

Four different types of computer programs were used to provide

instructional activities and collect pertinent data for the study.

These programs will henceforth be referred to as MEMOPS, CHALLENGER,

PASTUT, and MINIPAS. All four of these lessons were programmed in the

Digital Authoring Language and were made available to students through

the Courseware Authoring System on one of the Iowa State University

VAX Clusters.

MEMOPS

MEMOPS was a lesson designed to give novice programmers an early

opportunity to experience elementary programming tasks in what appears

to the novice as a "non-programming" set of activities. Using a

"move" (MOVE X[l] TO Z) and/or a "compare" (COMPARE X[l] WITH X[2])

www.manaraa.com

36

instruction, students were required to work through a set of five

manipulative exercises designed to familiarize them with the following

concepts: 1) writing to memory is a destructive operation, 2) reading

from memory is a copy operation, 3) temporary storage is needed to

preserve information, 4) computers linearly process the instructions

of a program one at a time, 5) the form of a programming statement

must adhere to the syntax rules stipulated by the compiler in use, and

5) array cells must be addressed using an index.

The five manipulative activities presented in MEMOES included

moving the smallest value stored in an array of elements to another

memory location (Figure 1), moving the largest value in an array of

elements to another location, swapping the values stored in two

different memory locations, sorting the values in ascending order

(Figure 2), and sorting the values in descending order. Students were

required to perform all five activities using both a visible model of

memory (Figure 2) and a non-visible model of memory (Figure 3).

Following the successful completion of all activities using both the

visible and non-visible models, the student was asked to summarize

what was learned by answering two multiple-choice questions (Figures 4

and 5).

For the manipulative activities, the MEMOPS program provided two

types of feedback. If the instruction that the student typed was

syntactically correct, the program performed the operation

irrespective of whether it contributed to the solution of the problem.

If the instruction was not syntactically correct, the program informed

www.manaraa.com

37

exercise: Move the suai lest element of array X to Z.

INSTRUCTION CODE

Tape check to evaluate your solution.
€© help restart menu

MEMORY
[1]

12]

X G]
14]

15}

z

17
64

999?

FIGURE 1. Visible memory model for MEMOES Task 1 (moving the smallest
value to Z)

the student of the error and provided examples of correct formats and

types of operations that could be performed. At no time during any of

the five activities did the lesson offer "cook-book" instructions on

what to enter to solve a given problem. In order to determine if an

activity had been successfully completed, the student had to request

that the computer check the final status of the values in the model.

Success was based only upon the status of the model, not upon the

student's efficiency in attaining that state. The student was allowed

to restore the original values and restart the activity at any time.

In addition to providing the manipulative activities, MEMOPS was

programmed to record the student's efforts in attempting each

activity. Individual files were maintained containing all

www.manaraa.com

38

EXERCISE: Sort the array X into ascending order. The suai lest value
should be in X[l]. The largest value should be in XI5].

INSTRUCTION CODE MEMORY
[1]

[21

X
[4]

[51

z

28

45
17

47
9999

Type check to evaluate your solution,
help restart menu

FIGURE 2. Visible memory model for MEMOPS Task 4 (sorting the values
of an array in ascending order)

syntactically correct operations entered by the student. The initial

and final status of the model were also recorded so that the

researcher could reconstruct each student's MEMOPS session at a later

date.

CHALLENGER

The CHALLENGER program was used to provide a placebo computer

activity for those students not assigned to the MEMOPS treatment

group. CHALLENGER was a two-dimensional puzzle that looked like one

face of a Rubik's cube. It was a 3 X 3 matrix of squares each of

which could be either white or green (Figure 6). The color of a

specific set of squares could be changed by moving a blinking cursor

www.manaraa.com

39

exercise: Sort the array X into ascending order. The smallest value
should be in XEll. The largest value should be in XIS].

INSTRUCTION CODE MEMORY
[11

123

X 131
[41

[51

z

Type check to evaluate your solution,
help €s) restart menu

FIGURE 3. Hidden memory model for MEMOPS Task 8 (sorting the values
of an array in ascending order)

SUMMBPH

This suHwary is intended to help formalize sî ific krawledge you have
acquired from the lesson. It contains «questions and general statements
which should test your understanding and some insights, you may have
aĉ iired.

Select the option and press OKTueMi, in response to the question:

Storing a new value in a mewory cell:
1. forces the old value to a deeper level, where it can not

be seen.
2. replaces the old value with the new value.
3. enables the cell to contain two values.

Your choice >

FIGURE 4. First MEMOPS summary question

www.manaraa.com

40

SumfitarM

This suMMary is intended to help formalize ŝ ific knowledge you have
aĉ iired from the lesson. It contains (questions and general statements
Wiich should test your understanding and some insights, you «ay have
ac<iuired.

Select the option and press OETDBW} , in response to the question:

In swaping the values of two Memory cells A and B:
1. cell B should be loaded with the value of cell A and then cell

A should be loaded with the value of cell B.
2. a third cell would be needed.
3. the two values would be exchanged sinultaneously.

Your choice >

FIGURE 5. Second MEMOPS summary question

to a particular square and pressing the <RETURN> key. Due to the

symmetry of the matrix only three distinct moves were possible. By

placing the indicator in the middle square along one side, all three

squares along that side would change color; the white ones became

green and the green ones became white. If the indicator was placed in

a corner square, that square and the three surrounding squares changed

color. If it was placed in the center square, that square and the

four center squares on each side changed color.

Using the three moves, the student's goal was to change the

pattern from an arbitrary arrangement of white and green squares to

the final matrix containing a single white cell surrounded by eight

green cells. Since the blinking cursor could only be placed on a

green cell, the goal was not easily attainable. Unlike the other

www.manaraa.com

41

•
GOAL:

Have the Middle cell in white, and
all other cells in green.

Shaded portion shows
the region of change.

Cursor at comer.

Cursor at Middle of
side.

Cursor at center.

use arrow keys ŒDŒD to position, «crawl to Make a Move, or to quit.

FIGURE 5. CHALLENGER display

computer lessons described in this section, the CHALLENGER lesson was

not intended to introduce students to any programming concepts.

Rather, it was used to equalize the computer-operating experiences

between the two experimental groups.

PASTUT

The PASTUT lesson was a tutorial type of computer lesson designed

to reinforce information presented in lecture regarding the syntax and

semantics of Pascal statements. This lesson consisted of brief

narratives followed by short-answer questions- The purpose of the

program was to ensure that all of the students were familiar with and

had a working knowledge of the Pascal instructions needed to complete

the assigned programming tasks. The instructions covered in this

www.manaraa.com

42

tutorial were the assignment, IF, PROGRAM, VAR, READLN, and WRITELN

statements. In addition, the tutorial covered the function of

semicolons as statement terminators and overall Pascal program

structure. In order to successfully complete the lesson, students

were required to generate several commands of each type presented.

MINIP&S

MINIPAS was a computer program that created a simplified

environment for running Pascal programs. Included in MINIPAS was an

editor for entering Pascal statements, a compiler that would perform

the typical syntax checks done by any standard compiler, and a visible

memory window that allowed the user to view the values of variables

during program execution (Figure 7). A tracing feature permitted the

user to execute a program one statement at a time in order to observe

the action taken by the computer in response to individual Pascal

statements. By tracing, the user could observe the function of an

individual statement as well as the collective action of a group of

statements. Thus, MINIPAS was designed to facilitate the learning of

the language and the debugging of algorithms.

In addition to serving as a simplified programming environment,

MINIPAS stored all versions of all programs that each student

successfully compiled. The successive versions of programs and

additional data such as compilation errors and length of time in

MINIPAS were used in developing the performance protocols that

documented programming behavior.

www.manaraa.com

43

Prograw Exchange (input,output);
(* A student's Pascal program entered into MINIPAS. *)
Var X,Y,Te»ip : integer;
Begin

Readln CX,Y);
* Tewp := x;

X := Y;
Y := Temp

End.

Mer-><-iL
Edit Compile Run Delete

? 23 59

FIGURE 7. MINIPAS display

Instruments

Three types of instruments were used to collect the data

pertinent to the study. Besides the background questionnaire, two

paper-and-pencil tests were administered and the online programming

actions for both the MEMOES and MINIPAS lessons were recorded.

The two sets of paper-and-pencil tests were designed to measure a

student's knowledge regarding memory operations, syntax, and ability

to generate Pascal code to perform selected programming tasks. On the

first test, the students were instructed to generate Pascal code for

two programming problems. The first problem was to write a program

that would swap the values of two variables. The second problem

consisted of writing a program that would request the user to input

help IE!) exi

www.manaraa.com

44

three numbers (in any order) and then sort the numbers from smallest

to largest. Refer to Appendix C for a copy of this test.

The second paper-and-pencil test measured more complex

programming concepts including the implementation of array data

structures and looping constructs. On this test, students were asked

to identify illegal array declarations and run-time errors caused by

inappropriate index values, hand-execute two Pascal programs and state

the final values that would "be stored in the arrays declared in each

program, and generate Pascal code that would perform selected array

manipulation tasks. These array manipulation tasks included writing

Pascal programs that would compare the contents of two arrays, reverse

the order of the values stored in an array, and sort the values of an

array in ascending order. Refer to Appendix D for a copy of this

test.

Programming is usually performed in an environment that is

interactive and provides the programmer with feedback vital to the

programming process. As discussed in the literature review, the

normal paper-and-pencil testing environment may be of questionable

worth in measuring certain programming skills. More specifically,

normal testing procedures would appear to be inappropriate for

collecting information concerning the interactive nature of

programming and for measuring the student's ability to utilize the

feedback provided by the computer in developing programming solutions.

In order to study this aspect of programming behavior, students were

permitted to enter their written solutions to three of the test

www.manaraa.com

45

questions into the computer and run and modify these solutions until

they performed the assigned programming tasks. These runs were

collected by the computer and were later used in developing individual

protocols of programming behavior.

Research Procedure

The study was conducted as an integral part of an industrial

educational and technology course. The sixteen week course schedule

included word processing for the first two and one-half weeks and

programming in the Pascal language for the remainder of the course.

The experiment was conducted in two parts. The first part took place

during the third through the fifth weeks of the semester when the

students were learning the general characteristics of languages,

compilers and programming practices. During this period the PROGRAM,

VAR, IF and assignment statements were presented. The second part of

the study took place during weeks eleven through thirteen when FOR

statements and array declaration statements were covered. Instruction

on using a word processor preceded the first part of the study.

Detailed instruction on IF statements, graphics capabilities of the

Apple He microcomputer, and a program to simulate the actions of a

solar collector preceded the second part of the study.

The research design for the study consisted of a post-test quasi-

experimental design using a matching strategy for assigning

participants to treatments. Based upon background information

collected using the questionnaire, students were assigned to matched

www.manaraa.com

46

pairs. The criteria for matching was based primarily upon previous

programming experience, mathematical background, college grade point,

and grade expectation. Once the matched pairs had been made, one

member of each pair was randomly assigned to the treatment group and

the other member of the pair was assigned to the control group. The

instructional treatments received by the two experimental groups

differed only in initial exposure to either the MEMOES lesson or the

CHALLENGER lesson. Subsequent lecture presentations, programming

assignments, and posttest activities were identical for both groups

(Figure 8).

Group Weeks 3-5 Weeks 11 2 13

Treatment Q R MEMOES II PI 12 P2

Control 5 R CHALLENGER II PI 12 P2

Q - Questionnaire administered
R - Randomly assigned students to groups using matching strategy
11 - Classroom instruction, lab exercises and programming assignments

covering simple memory operations, Pascal declaration statements,
assignment statements, and IF statements

PI - Posttest 1 on memory operations, swapping, sorting three numbers
12 - Classroom instruction, lab exercises and programming assignments

covering looping constructs, array declarations and implementation
P2 - Posttest 2 on array declarations and implementation, sorting

FIGURE 8. Sequence of instructional events

The background questionnaire was administered to all participants

during the second class meeting and the experimental groups were

formed. Instruction on the use of the MINIPAS editor was given and

www.manaraa.com

47

students worked through the lesson's "Learn to Edit" section. In the

next class period, students were exposed to either the MEMOES or

CHALLENGER lessons. Both lessons required approximately an hour to an

hour and a half to complete. Assigned seats were used to prevent

students in one treatment group from viewing the screen displays of

the other group's lesson.

The next three class periods were spent introducing students to

simple memory operations, Pascal declaration statements, assignment

statements and simple IF.-THEN.-ELSE structures- Students worked

through the corresponding sections of the PASTUT lesson and wrote

short programs requiring the use of variable declarations and

assignment statements.

The first posttest, consisting of two programming problems, was

then administered- Students were asked to generate Pascal code that

would 1) interchange the values of two variables and 2) order three

numbers that were entered at random. After writing a programming

solution down on paper, each student was allowed to enter the solution

into the MINIPAS program and test it to see if it performed the

assigned task. Students were allowed to modify their solutions using

the MINIPAS lesson until they were satisfied that their code

successfully performed the assigned task.

The second part of the study was conducted during the latter part

of the semester. Students were given instruction on the Pascal FOR

loop and on array declarations as well as the use of loops and arrays

in programs. Five class periods were spent working through examples

www.manaraa.com

48

of programs that implemented array data structures. Several short

programming assignments were given requiring the students to utilize

arrays and FOR loops.

The second posttest measuring the student's understanding of FOR

loops and array implementation followed. On the first part of the

test, students answered questions concerning array declarations, run­

time errors caused by inappropriate index values, and the values

stored in the cells of an array after program execution. The final

three questions of the test required the students to generate Pascal

code that would compare the contents of two arrays, reverse the order

of values stored in a single array, and sort the values of an array in

ascending order. Students were allowed to input their solutions to

the sort problem into MINIPAS and run and modify their solutions until

they were satisfied with their code.

Methods of Analysis

To ensure that the treatment groups did not significantly differ

on the matching criteria used in assigning students to experimental

groups, chi-square tests of independence were performed. None of the

chi-square values were found to be statistically significant. (Refer

to Appendix Tables A-1 through A-7 for frequency counts and chi-square

values.) Based upon this information, it was concluded that the

backgrounds of the participants assigned to each of the two treatment

groups did not differ significantly.

www.manaraa.com

49

The standard criteria for evaluating a programming solution is

primarily based upon whether the solution, if entered into a computer,

will execute properly and perform the specified task. Partial credit

is often given for syntactically incorrect solutions that exhibit

"desirable" implementation features, or for solutions that correctly

process only a subset of instances in the problem's domain. This

technique, of assigning a numerical score to a programming solution,

was determined to be an inadequate measure of programming performance

for this investigation because it could potentially conceal features

of a student's solution that might reflect subtle but important

aspects of programming knowledge.

Therefore, the primary evaluation technique used in this study

consisted of documenting the characteristic features of a student's

initial and final solution efforts in attempting to generate a

computer program for a given task. Analyses that compared the number

of treatment students exhibiting a feature to the number of control

students exhibiting the feature were then performed. Again, chi-

square tests of independence were used to perform these group

comparisons. Additional comparisons of group performance using t-

tests were performed on the number of initial and total compilations

recorded for a programming session as well as the number of unique

versions of a program.

Although posttest scores were, in general, not considered to be

an adequate measure of programming performance in this investigation,

scores were used as a supplementary measure of performance on the

www.manaraa.com

50

second posttest. The scoring procedure for this posttest can be found

in Appendix D. T-tests were used to compare the posttest scores of

the treatment students to the posttest scores of the control students.

www.manaraa.com

51

CHAPTER IV: FINDINGS

The goals of this study were; 1) to document novice programming

behavior in an attempt to determine the processes of learning to

program, 2) to evaluate the effects on student learning of a

manipulative computer model used prior to formal instruction on

computer programming, and 3) to evaluate the use of protocols as tools

in studying programming behavior. In this chapter a documentation of

the behavior of beginning programmers over a series of programming

tasks is presented. In addition, the behavior of students who did

experience a manipulative model prior to attempting the programming

tasks is contrasted with those who did not.

The chapter is subdivided into three major sections that describe

in detail the behaviors documented in the protocols for the MEMOES

activities and the two posttest programming problems. Within a

section, the behaviors for each activity or problem, including a

comparison of experienced and non-experienced programmers, are

presented first. For the sections describing the two posttests, the

behaviors of students who used MEMOES is then contrasted with those

who did not. At the end of each section is a summary of that section.

Throughout this chapter, identifiers that denote the students

whose solution efforts displayed the characteristic under discussion

are listed. Identifiers for the students who received the MEMOES

treatment begin with the letter "T" and those of the students in the

control group begin with a "C". The inclusion of these identifiers

provides a visual comparison of the treatment and control students and

www.manaraa.com

52

permits the interested reader to follow the key behaviors of

individual students.

MEMOPS Protocol Findings

The MEMOPS lesson consisted of two subsets of tasks. In the

first subset of tasks, the contents of a five-element array (X) and a

simple integer variable (2) were visible to the student. In the

second subset, the values of these memory locations were hidden from

view. In this section, the behaviors that were documented for the two

subsets of tasks will be discussed independently. Individual solution

features for the two subsets are reported in Appendix Tables B-1 and

B-2.

Student performance on the visible memory tasks

The first two MEMOPS tasks were designed to provide practice with

the syntax of the MOVE command and to ensure that students understood

its primary function. The first exercise requested that the student

move the smallest value in the array to a specified memory location

and the second exercise asked the student to move the largest value.

Completing these tasks required neither complex logic nor sequencing

decisions since the student could visually determine which values

needed to be moved. Therefore, detailed protocol characterizations

were not made.

On the third MEMOPS task students were asked to interchange the

values of two memory locations. This activity required the student to

possess and use the knowledge that storing one value in a memory cell

www.manaraa.com

53

destroys any previous value that may be stored there. It also

required the sequencing of instructions. In order to complete this

activity, the student needed to first move the value of one of the

cells into a third unused memory location. After this had been done,

the value of the second cell could be moved into the first cell. The

final step was to move the value in the third memory location into the

second cell. Figure 9 graphically displays an efficient solution to

this swapping problem as well as a possible series of MOVE

instructions that would successfully solve the problem if issued

separately and in the given sequence.

1

1. Move x[l] to Z

2. Move x[2] to x[l]

3. Move Z to x[2]

FIGURE 9. Solution to the MEMOPS swapping task

Two distinguishing characteristics related to previous

programming experience were discovered by studying performance on the

swapping task. These characteristics were method of moving values and

choice of auxiliary storage location. For each characteristic,

performance patterns of students with little or no previous

www.manaraa.com

54

programming experience differed from those of students with more

extensive programming experience.

The first distinguishing performance characteristic between

experience groups was revealed by analyzing the error patterns of the

inexperienced programmers. Of the ten students who had little or no

programming experience, nine tried to interchange the values of the

two memory cells by moving the value of the first cell into the second

(MOVE X[l] TO X[2]), and then moving the value of the second cell into

the first cell (MOVE X[2] TO X[l]). Of the eight students who had

previously programmed in either FORTRAN or Pascal, three students

(T09, TIO, TIS) also started to employ this solution. Two of these

students perceived that an original value was lost after issuing only

one MOVE instruction. Only one experienced student (T15) completed

this solution attempt. These findings suggest that the knowledge that

a MOVE instruction destroys the original contents of a memory cell, or

the ability to use this knowledge, appeared to be lacking in beginning

programmers and even caused some difficulties for those with previous

programming experience.

The second documented characteristic for the swap task was the

student's selection of a memory location to use in preserving an

original value. Eight students stored a value in the "Z" location and

another eight students stored a value in one of the array's unused

cells (X[3]). An examination of the data revealed that students with

little or no previous programming experience used the "Z" location to

store a value. Students with more extensive programming experience

www.manaraa.com

55

used the free element closest to the cells containing the values that

were to be swapped. Thus, the experienced students demonstrated

facility in generalizing the form of the statement while the beginning

students restricted their use to the form they had previously used.

In the fourth and fifth MEMOPS tasks the students rearranged the

given values of an array and put them into either ascending or

descending order. Solving the two visual sorting tasks required the

students to develop a procedural plan or algorithm for sorting and

then translate the plan into a sequence of move instructions.

Characterizations of algorithm development and implementation were

made, beginning with the original cell values given to each student

and then retracing the series of move instructions issued by the

student in solving each sorting problem. Two features of the

implemented algorithms were documented for the visible sorts.

The first feature documented in the sorting protocols was the

order in which the student attempted to fill the cells of the array.

Most students tried to fill the array in a sequential manner. These

students issued MOVE instructions that placed the smallest (largest)

value into its proper cell first. Instructions placing the second

smallest (largest) value into its proper location were issued next.

These were followed by instructions that permitted the middle value to

be moved into its proper location and so forth. An example of a

series of MOVE commands that illustrate sequential filling is shown in

Figure 10. No patterns concerning filling the array in a sequential

manner and previous programming experience could be detected since

www.manaraa.com

55

nearly all of the students used sequential filling to complete both

visible sorting tasks.

(1) (2)

5 1

4 \ 4

1 1

2 / 2

3 j 3

5
r

5

(3) (4) (5)

±)

(1) Move x[l] to 2

(2) Move x[3] to x[l]

(3) Move-x[2] to x[3]

(4) Move x[4] to x[2]

(6) (7)

1 1

2 2

3 3

4) 4

3
/

5

5 5

(5) Move x[3] to x[4]

(6) Move x[5] to x[3]

(7) Move 2 to x[5]

b

FIGURE 10. a series of MOVE instructions illustrating sequential
filling of an array

The second feature recorded for the visible sorting performances

identified the manner in which the student interchanged element

values. For example, the student may have been given a 3-cell problem

with a value of 3 stored in the first cell, 1 in the second cell, and

2 in the third cell. This problem could be solved in one of two

manners. One method would be. to employ two 2-cell swaps and

interchange cells one and two and then interchange cells two and

three. The other method would be to move the original value from the

first cell to a free memory location, move the value of the second

www.manaraa.com

57

cell into the first cell, move the value of the third cell into the

second cell, and then move the value in the free location into the

third cell. Figure 11 graphically illustrates these two swapping

techniques for a 3-cell problem-

Two 2-Cell Swaps

(1) (2) (3) (4) (5) (6)

(1)

3

1

2

£

3

FIGURE 11. Two swapping techniques for a 3-cell sort problem

(2) (3) (4)

3-Cell Swau

Nearly all of the students implemented a swapping method that

minimized the number of MOVES needed to complete the reordering task.

Although this approach is very easy for a human processor, it would be

www.manaraa.com

58

very difficult to implement on a computer. No patterns concerning

previous programming experience and selection of a particular swapping

technique could be detected from examining the swapping histories.

Student performance on the hidden memory tasks

The cell values for the last four MEMOES tasks (Tasks 6-9) were

not visible, thus these tasks are referred to as the hidden memory

tasks. By issuing a COMPARE instruction (i.e., COMPARE X[l] TO X[2]),

the student could learn the relationship between two hidden values

(i.e., X[l] is larger than X[2]). The MOVE instruction was still

available for use in moving values from cell to cell.

MEMOPS tasks six and seven requested that the students move the

smallest and largest values stored in the array to the Z location.

These two tasks were designed to familiarize the students with the

COMPARE instruction and to force the students to use it in conjunction

with the MOVE instruction in order to locate and move values. The

predominant feature noted for these tasks was the use of a "keeps

best" algorithm to determine which element contained the value that

should be moved to Z. In this algorithm, the smaller (larger) value

is always "kept" and compared to the next element's value. Figure 12

illustrates a "keeps best" algorithm for locating the smallest value

stored in an array.

Most of the students, regardless of prior programming experience,

utilized the "keeps best" algorithm in solving the hidden largest and

hidden smallest tasks. Only four students failed to use this

algorithm. The algorithms of these students were characterized by a

www.manaraa.com

59

A student's MEMOES
instructions

compare X[l] to X[2]

compare X[2] to X[3]

compare X[2] to X[4]

compare X[2] to X[5]

move X[5] to Z

MEMOES feedback

X[l] is greater than X[2]

X[2] is less than X[3]

X[2] is less than X[4]

X[2] is greater than X[5]

(value in X[5] moved to Z)

FIGURE 12. A sequence of MOVES illustrating a "keeps best" algorithm
for locating the smallest value stored in an array

failure to efficiently utilize the comparison feedback. This resulted

in excessive comparisons between elements. Of the four students who

failed to use the "keeps best" algorithm two (TOI, T05) had never

programmed before, one (TIO) had programmed in BASIC, and one (Til)

had programmed in FORTRAN.

The final two hidden memory tasks asked students to put the

values of an array's cells into ascending (MEMOES Task 8) and

descending order (MEMOES Task 9). In solving the hidden sorting

tasks, algorithm development and implementation became even more

complicated. The values of the arrays were unknown and the student

could not immediately determine the final destination of each value by

visual inspection. In addition to the sequential fill used for the

visible sorts, three other solution features were used to document the

processes the student used in determining the order of the hidden

values.

www.manaraa.com

60

The first noted feature of the student's algorithm for

determining the order of the values was the selection of elements for

comparison. Several students used a "keeps best" method to compare

values. For example, the four COMPARE instructions in 12 might be

issued to determine which cell contained the smallest value. Next, a

series of COMPARE instructions might be issued to locate the second

smallest value. This process of "keeping" the element containing the

smallest value for use in the next comparison would continue until the

order of all of the values was known. Eight students (T02, T06, T08,

T09, T13, T16, T17, T18), six of whom had previously programmed,

employed the "keeps best" technique on both the ascending and

descending sorts.

The second distinguishing feature for determining the order of

the hidden values was the manner in which students sequenced their

MOVE and COMPARE instructions. Five students (T08, T09, T13, T17,

TIB) with prior programming experience combined the "keeps best"

algorithm for locating values with the sequential fill for choosing

the cell to be filled- These students issued a sufficient number of

COMPARE instructions to determine the value that needed to reside in a

particular cell, and then immediately moved that value. This process

of comparing and moving values was repeated until all values were

properly ordered. The remaining thirteen students compared values to

determine all of the relationships and then issued MOVES until the

values were ordered.

www.manaraa.com

61

The final feature documented for the hidden sorts was whether all

of the necessary comparisons had been made for determining the order

of the values. Students who made all of the necessary comparisons

were judged as having attained closure for the problem since they knew

the relative order of all values. All but four students (TOI, T07,

TIO, Til) attained closure on the two hidden sorting tasks. In this

case, there was not an apparent pattern between closure and previous

programming experience.

Upon finishing the MEMOPS activities, students were asked to

complete two multiple-choice summary statements. The first statement

summarized the action that occurred when a new value was stored in a

memory cell. The second statement summarized how the values of two

memory cells could be interchanged. Only four students (T03, T05,

T15, T18) selected an incorrect completion option for the first

statement. All of the students correctly completed the second summary

statement.

The final feature documented for the MEMOPS tasks was the number

of times tasks were restarted. The average number of total restarts

for students with little or no previous programming experience was

4.00 restarts with a standard deviation of 3.23 restarts. The average

number of restarts for students with more extensive programming

experience was 1.50 with a standard deviation of 1,69. This

difference in number of restarts indicated that the MEMOPS tasks

provided exposure to programming concepts with which the inexperienced

www.manaraa.com

62

students were unfamiliar. Thus, the treatment did, in fact, have the

potential for affecting the student's future programming behavior.

Summary of MEMOPS findings

The MEMOPS simulation presented a series of tasks intended to

move beginning programmers from the robust realm of human

communication to the more restricted environment of computer

programming. The activities were selected and sequenced so that a

concept or technique learned in one task was useful in performing the

next. In completing these tasks, students were required to

interchange the values of two variables, order the values of a visible

array, select a value from a hidden array, and order the values of a

hidden array.

The MEMOPS protocols exposed some differences between experienced

and inexperienced programmers as well as procedural differences among

students within these groups. On their first attempt at interchanging

the values of two memory cells, nearly all of the less experienced

programmers destroyed an original value. The technique of preserving

a value by copying it into an unused memory location was quickly

mastered, however, and presented only minor problems on subsequent

tasks. A second interesting difference between the experience groups

was the choice of memory location used in preserving a value. All of

the inexperienced students used cell Z to preserve a value whereas all

but one of the experienced students used array element X[3]. The

novice programmers probably selected the Z cell because they had been

required to use it in the previous MEMOPS activities. The more

www.manaraa.com

63

experienced programmers, however, may have chosen cell X[3] because it

was physically closer to the cells containing the two elements that

were to be exchanged. Students with no prior programming experience

found this interchanging of values to be somewhat challenging,

although once the technique was mastered it presented only minor

problems on subsequent tasks.

Nearly all students used similar methods to complete the visible

reordering and hidden selection tasks. Visible reordering was

accomplished by inspecting all of the values and shuffling those that

were out of order. For most students, the cells of an array were

filled in a sequential manner from top to bottom. On the hidden

selection, a "keeps best" technique was used by all but four of the

students.

The hidden ordering problem could have been efficiently solved by

combining the "keeps best" technique with a sequential fill; however,

no inexperienced students and only half of the experienced students

chose this approach. Most of the students made sufficient comparisons

to determine the relationships among all of the values and then

completed the task as they had the visible ordering. Throughout the

MEMOPS activities, established previous experiences were chosen over

recently acquired techniques as tools for building solutions.

www.manaraa.com

64

Posttest 1 Findings

The first posttest was designed to measure the student's ability

to generate Pascal code for two simple programming problems, a two-

variable swap and a three-variable sort. For both problems, students

were given an incomplete program and instructed to add whatever Pascal

code might be necessary to complete it. After writing an initial

solution on paper, students were allowed to enter the solutions into

the MINIPAS computing environment and modify them until the program

successfully solved the given task. The findings reported in this

section are based upon analyses of both the paper solution attempts

and the MINIPAS computing histories for each of the two posttest

programming tasks.

Individual student performance on the swap problem

The first programming task on the posttest was to swap

(interchange) the values of two variables. Conceptually, this task

was identical to the swap performed by the students in the MEMOPS

environment. The optimal solution for this problem consisted of

adding three assignment statements to the incomplete code that was

given. Six features of the paper solution attempts were documented.

They included use of 1) syntactically correct Pascal statements to

complete the task, 2) correct logic, 3) MEMOPS MOVE instructions, 4)

free memory locations to preserve values and 5) unnecessary

programming statements. The sixth feature documented the presence of

www.manaraa.com

55

a "wrong-way" assignment error in the student's code. Appendix Tables

C-1 and C-2 docxament these solution features for the swap problem.

Fourteen of the thirty-six students produced initial solution

attempts which were entirely correct while another thirteen produced

solutions that were judged to be logically correct. Many of these

logically correct solutions contained syntactically flawed Pascal

assignment statements. Five experimental students incorporated HEMOPS

MOVE statements into their programs that logically interchanged the

values. The attempts of nine students (TOI, T03, TIG, T15, C02, C04,

COS, C07, COS) were illogical for the given problem and also contained

unnecessary and often syntactically incorrect Pascal statements. Of

these nine students, one (T15) had previously programmed in FORTRAN

and another (COS) had programmed in BASIC.

Another feature on which the solutions differed was the number of

variables used to preserve original values. In the MEMOPS program,

the students in the treatment group had used a single variable for

this purpose. They did not, however, universally transfer this

procedure to the Pascal problem. A majority of students (24)

completed the program by assigning the original values of A and B to

variables C and D, respectively, and then reassigning the values of C

and D to B and A. Only seven students (T05, T09, T14, T17, TIS, C14,

CIS) wrote a solution that used a single additional memory location to

temporarily preserve an original value. Four students (TOI, T03, C02,

C04) failed to use any additional variables to preserve values.

www.manaraa.com

66

In addition to the use of MEMOES MOVE statements, three other

types of errors were made on the initial solution attempts to the swap

problem. These errors reflected misunderstandings concerning the

functions of specific coding statements, Pascal syntax requirements,

and direction of assignment. Eight students (TOI, T03, T08, T15, C02,

C04, COS, C07) included extraneous IF, READLN and WRITELN statements

in their solutions. Over half of the students wrote code that

contained numerous syntax errors. The two most prominent syntax

errors were failure to separate statements using semicolons (,-) and

use of "=" as the assignment operator rather than ". Seven

students (T02, T07, T08, TIO, COS, C06, C13) wrote assignment

statements that exhibited a "wrong-way" assignment error. Unlike the

mathematical equality operation where the "=" does not denote a

direction, imperative programming languages such as Pascal invoke

right-to-left assignment where the value of the variable to the right

of the assignment operator (:=) is assigned to the variable named on

the left of the operator. Figure 13 illustrates a solution to the

swap problem that exhibits a "wrong-way" assignment error.

Protocols of each student's online programming efforts for the

Pascal swap problem were developed using the data recorded in the

MINIPas histories. They documented the 1) number of initial

compilation attempts prior to obtaining the first executable version

of the program, 2) total number of compilations attempted for all

versions, 3) number of unique executable program versions, 4) specific

programming problems encountered by the student, 5) time taken to

www.manaraa.com

67

Correct
Solution

Incorrect
Solution

C:=A
A:=B
B:=C

A;=C
B:=A
C:=B

(right-to-left
assignment)

(left-to-right
assignment)

FIGURE 13- A correct solution and one exhibiting the "wrong-way"

generate a correct solution using the MINIPAS environment, 6)

correctness of logic for the final solution attempt and 7) number of

additional memory locations used.

In using the MINIPAS compiler to produce a final solution, the

students compiled, altered and recompiled their programs until all

syntax errors were eliminated. They then executed their programs,

modified them for logic errors and recompiled them until their

programs executed properly. An average of 4.83 compilation attempts

per student were required to produce the first executable version of

the solution and 6.47 total compilations were made. The average

number of unique executable program versions per student for the

problem was 2.33. Only three students (T03, C02, C04) failed to

successfully compile their solution attempts and thus had no

executable versions.

The MINIPAS histories indicated that syntax was a major problem

for several students (T03, T06, T09, Til, T13, C02, C03, C04, COS,

C07, COS, C17). Of noted difficulty, and recorded separately, was the

assignment error

www.manaraa.com

68

use of a "wrong-way" assignment statement. On their paper solutions,

seven students demonstrated confusion on assignment direction.

However, the MINIPAS histories revealed that thirteen students (TOI,

T02, T05, T06, T07, T08, T09, TIO, Til, COS, COS, C07, C13)

experienced this problem.

Algorithm development caused difficulty for six students (T03,

T15, C02, CG4, CC5, COS). Three of these students (C04, COS, COS)

initially tried to interchange values by issuing the assignment

statements "A:=B; B:=A". Among the students who issued syntactically

correct assignment statements, proper ordering of these statements was

yet another problem (TOI, T05, C04, COS, C07, COS). As one would

expect, students with little or no prior programming experience

encountered a wider range of problems attempting to solve the swapping

task than did the students who had previously programmed in either

FORTRAN or Pascal.

In addition to the fourteen students who had correct paper

solutions, sixteen more students were able to generate correct

solutions utilizing the MINIPAS programming environment. Six students

(T03, T06, C02, C04, C07, COS) failed to produce an acceptable

solution to the problem in the allotted fifty minutes. Of these six

students, four had never programmed before enrolling in the present

course and one had written some BASIC programs.

www.manaraa.com

69

Treatment group comparisons for the swap problem

The performances of the students in the MEMOPS and NON-MEMOPS

groups were compared on both their initial and final solution attempts

to the swap problem. For the initial solution attempt, chi-square

tests of independence were conducted for the number of students 1)

writing a syntactically correct solution and a logically correct

solution, 2) using one or two variables to preserve original values,

3) inserting unnecessary code into the solution, and 4) writing code

that exhibited the "wrong-way" assignment error. These tests

indicated that performances on the initial solution attempts did not

differ significantly between treatment groups. The summary data used

in these analyses are presented in Table 1.

TABLE 1. Number of students exhibiting selected solution
features in their initial solution attempts for the
swap problem

Solution Features

Group 1 2 3 4 5

Treatment 6 14 (1 variable) 5 4 4
(n=18) (2 variables) 11

Control 7 13 (1 variable) 2 4 3
(n=18) (2 variables) 14

Solution Features:
1 Syntactically and logically correct solutions
2 Logically correct solutions
3 Additional variables used to preserve values
4 Solutions containing unnecessary code
5 Solutions exhibiting the WRONG-WAY assignment error

www.manaraa.com

70

Using the MINIPAS history data, t-statistics were computed on the

average number of initial compilations, number of total compilations, and

number of unique versions. No statistically significant differences

between the groups were found on the average number of initial
;

compilations (t(34) = .58, p < .57) or total compilations (t(28) = .46,

p < .66). A test of homogeneity performed on the variances of the groups

for the number of total compilations was statistically significant

(F(17,17) = 2.85, p < 0.04) and indicated that the variance for the

treatment group was less than that of the control group. No differences

between treatment groups were found for the mean number of executable

versions (t(34) = .55, p < .58). Descriptive statistical information for

the two experimental groups using the MINIPAS compiler is reported in

Table 2.

The types of problems students encountered in attempting to program

a solution did not differ between the two experimental groups except for

the "wrong-way" assignment error. As is shown in Table 2, the number of

treatment students exhibiting this problem was more than twice as large

as the number of control students making the same mistake (9 students

versus 4 students). This difference approached statistical significance

(chi-square = 3.01, df = 1, p < .08). The total number of problems

encountered by the two groups revealed little difference (19 for the

MEMOPS students and 22 for the control group). However, in comparing

only those students from each group who had little or no previous

programming experience, the NON-MEMOPS control students encountered a

greater variety of problems than did the MEMOPS treatment students.

www.manaraa.com

71

TABLE 2. MINIPAS history statistics for the swap problem

MINIPAS History Features

Group Initial Total Unique Programming
Compilations Compilations Versions Problems
Mean S.D. Mean S.D. Mean S.D.

(A) 6 (D) 2
Treatment 4.28 4.47 5.94 5.00 2.47 2,43 (B) 9 (E) 0
(n=18) (C) 2

(A) 7 (D) 4
Control 5.39 6.85 7.00 8.44 2.19 2.37 (B) 4 (E) 3
(n=18) (C) 4

Programming Problems;
(A) Syntax
(B) WRONG-WAY assignment
(C) Logic
(D) Ordering
(E) Attempted A:=B; B:=A solution

Whereas the non-experienced treatment students primarily made "wrong-way"

assignment errors, non-experienced control students encountered syntax,

logic, and ordering problems.

Since several students did not successfully complete the program, a

direct comparison of completion times for the two groups was deemed

inappropriate. However, an indirect comparison was made by dichotomizing

this variable into completion times greater than ten minutes versus

completion times less than ten minutes. Ten minutes was chosen as the

criterion after an inspection of the data revealed that minor problems

could be resolved within that time frame. Based on this classification,

the students in the MEMOPS treatment group took more time to solve the

www.manaraa.com

72

problem than did the students in the NON-MEMOPS control group (chi-square

= 5.35, df = 1, p. < .03). This information is reported in Table 3.

TABLE 3. Number of students exhibiting selected
solution features in their final solution
attempts to the swap problem

Solution Features

Group 12 3 4

Treatment 6 10 2 (1 variable) 3
(n=18) (2 variables) 14

Control 12 2 4 (1 variable) 2
(n=18) (2 variables) 12

Solution Features:
1 Correct solutions generated in 10 minutes or less
2 Correct solutions generated in more than 10 minutes
3 Incorrect solutions
4 Additional variables used to preserve values

Of the four MEMOPS treatment students (TOI, T03, T15, TIO) whose

initial solution attempts were illogical and poorly defined, two students

(T15, TIO) were able to generate a correct solution using MINIPAS. Of

the five NON-MEMOPS control students whose first attempts were illogical

(C02, C04, COS, C07, COS), only one student (COS) was able to generate a

correct solution using MINIPAS. The final solution attempts of the other

four students suggested that they made very little progress toward

generating a correct solution in the allotted fifty minutes.

www.manaraa.com

73

Individual student performance on the three-variable sort problem

The second programming task on the first posttest was to sort three

numbers from smallest to largest. The students were given a partial

program in which three values were stored into the variables A, B, and C.

The students were required to add code to order the values so that A

contained the smallest and C contained the largest value. The challenge

in solving this problem was to break the problem into three parts which

could be attacked separately.

An efficient solution to the three-variable sort problem is shown in

Figure 14. In this solution, the values of A and B are compared and if A

is larger they are reordered. Then the values of B and C are tested, and

if B is larger, B and C are reordered- At this time in the execution of

the program, C will always contain the largest value. However, if C

initially stored the smallest value, the preceding changes would cause

the values of A and B to be improperly ordered. This condition

necessitates a second comparison of A and B as the final step in the

solution. For this particular solution, the state of the problem

resulting from the execution of an IF statement is always the same. That

is, the first test comparing A and B always results in the larger value

being placed in B and the smaller in A.

A second solution arises from analyzing the problem with respect to

all possible initial conditions and processing each independently. That

is, if the values are arranged so that A is greater than B and B is

greater than C, then the values of A and C need to be exchanged. With

three variables there are six possible initial states, five of which must

www.manaraa.com

74

If A > B then
begin
D:=A; A:=B; B:=D
end;

If B > C then
begin
D:=B; B;=C; C:=D
end;

If A > B then
begin
D:=A; A:=B; B;=D
end;

FIGURE 14. Three-variable sort problem: efficient solution

be identified and reordered. An "isolate all cases" algorithm of this

type is shown in Figure 15.

If (a > B) and (B > c) then {code to order all three numbers}
If (a > c) and (C > B) then {code to order all three numbers}
If (B > A) and (A > c) then {code to order all three numbers}
If (B > c) and (c > A) then {code to order all three numbers}
If (c > A) and (A > B) then {code to order all three numbers}
If (c > B) and (B > A) then {code to order all three numbers}

FIGURE 15. Three-variable sort problem: isolate all cases solution

A third solution is obtained when a free memory location is used to

retain the larger value discovered by a comparison. This approach leads

to a complex solution because it necessitates "remembering" the variable

from which the temporary cell received its value. This third solution

reflects an incomplete segmentation of the original problem into

www.manaraa.com

75

independent parts. An example of the "complex shuffle" algorithm is

shown in Figure 16.

If (A < B) then D:=B
else begin D:=A; A:=B end

If (A < C) then B:=C
else begin B:=A; A:=C end

If (B < D) then C:=D
else begin C:=B; B:=D end

FIGURE 16. Three-variable sort problem: complex shuffle solution

Like the efficient solution in Figure 14, the complex shuffle

contains only three comparisons. After the'first test (A < B), the

variable D is given the larger value and A the smaller. The relative

size of B is unknown at this point. After the second test (A < C),

variable A will contain the smallest of the three values and variables B

and D will contain the two larger ones. Now, the content of variable C

is irrelevant. The third test (B < D) permits the proper ordering of B

and C. In developing this algorithm, the task of determining the output

of one step which can serve as input to the next places a heavy burden on

the programmer. This is complicated by the use of the variable D and the

unknown relative size of one of the variables.

The students were required to write their initial solutions to the

three-variable sort problem on paper. These attempts were analyzed to

determine 1) whether the solution was syntactically correct, 2) whether

the solution's logic was correct, 3) what algorithm was being attempted

(efficient solution, isolate all cases or complex shuffle), 4) whether

www.manaraa.com

76

there was evidence the student knew that original values could be

potentially destroyed, 5) how values would be interchanged, 6) if

assignment statements were used, and 7) whether compound statements were

being used in the IF statements. Solution features for the three-

variable sort problem are documented in Appendix Tables C-3 and C-4.

A solution was judged to be correct if it could be entered into the

computer and would produce the correct output with no modification. If

the solution had only minor errors in form but showed correct and

complete logic, it was judged to be a logically correct solution. For

example, solutions which would produce a compilation error only because

of missing semicolons or omitted BEGINS and ENDs surrounding assignment

statements were judged to be logically correct. Using these criteria,

the paper attempts of three students (T17, T16, C14) were judged to be

logically and syntactically correct. Three more students (T13, CIS, C15)

wrote logically correct solutions that contained syntax errors. All six

of the students who wrote logically correct solutions had previous

programming experience in either FORTRAN or Pascal. The solution

attempts of the remaining thirty students contained both logic and syntax

errors.

Solution algorithms to the three-variable sort problem were

classified as one of the following four types: an efficient solution

(Figure 14), an "isolate all cases" solution (Figure 15), a "complex

shuffle" solution (Figure 15), or an indeterminate solution. If the

solution contained IF statements similar to those shown in Figure 14 and

some indication that the student intended to exchange the values of two

www.manaraa.com

77

variables, it was classified as an efficient solution. If the solution

consisted of a sequence of IF statements containing boolean expressions

that included three variables, it was classified as an isolate all cases

solution. A solution in which 1) a value was assigned to a free memory

location (D) and 2) an IF statement was encountered before the value was

copied to another variable was classified as a complex shuffle.

Solutions that did not fit into one of these three categories were

classified as indeterminate solutions.

Ten students (TIO, T12, T13, T16, T17, T18, Cll, C13, C14, C17), all

of whom had prior programming experience, tried to implement the

efficient solution algorithm on their paper attempts. Eight students

(T05, COlv C03, C06, COS, C09, C12, C16) tried to use the "isolate all

cases" algorithm and twelve students (T02, T04, T07, T08, T09, Til, T14,

T15, C07, CIO, CIS, CIS) attempted the complex shuffle. The algorithms

of six students (TOI, T03, T06, C02, C04, COS) could not be categorized

as they were incomplete and showed no distinct initial features. None of

these last six students had any previous programming experience.

Solution attempts were also analyzed for evidence that the student

possessed the knowledge that original values of variables would be

destroyed when new assignments were made. Classification for this

particular characteristic was complicated by two factors. In cases

where students issued code such as "A:=a; B:=b; a:=B; b:=A", it was

assumed that the student was attempting to preserve the original values

even though these values would not be saved since Pascal compilers do not

distinguish between upper and lower case letters in variables names. In

www.manaraa.com

78

other cases, the destruction of values was attributed to faulty logic

rather than a lack of knowledge concerning the principle. For example,

consider the code "If A > C then D:=A; If B > C then A:=C". In this

case, it was assumed that the student was thinking something like "If A >

C then begin D:=A; If B > C then A:=C; end". Although the logic is

fragmentary, the student did appear to be trying to save the original

value of variable A. Using these criteria, twenty-one students were

judged to have written code that demonstrated knowledge that original

values would be destroyed when new assignments were made. The code of

six students (T07, COl, COS, C06, COS, COS), two of whom had programmed

in BASIC, suggested that they were unaware of this principle. The

written code of six inexperienced students and one student who had

programmed in Pascal (T03, T05, T06, C02, C03, C04, CIS) could not be

classified.

The swapping technique utilized by students who realized the

potential for destroying values was also documented. In general,

students with previous FORTRAN or Pascal experience compared two

variables and if appropriate exchanged the values before making any other

comparisons. Students with little or no previous experience either

failed to complete the exchanges before making additional comparisons or

wrote code that made no attempt to exchange values at all. Only eleven

students (TIO, T12, T13, T16, T17, T18, Cll, C12, CIS, C14, C17)

completed the exchanges before making additional comparisons.

Two students displayed unique behaviors concerning the swapping

features of their algorithms. One student (COS) attempted to store the

www.manaraa.com

79

order of all three values into a single variable (D := A, B, C). Another

student (C16) declared three.new variables and placed the original values

in order into these variables.

In addition to documenting the type of solution attempted and the

swapping technique used to exchange values, the use of assignment and IF

statements was also recorded. Four students (T03, T05, C04, CIS) failed

to issue any assignment statements in their initial solution attempts.

Only one student (TOI) failed to use an IF statement. Closer inspection

of the IF statements showed that twenty-four students used multiple

assignment statements that were to be executed based upon the outcomes of

IF tests. Eleven students (T05, T06, T07, T09, T15, C02, COS, C04, C07,

COS, CIS) failed to realize the need for multiple operations and used a

single assignment statement. Of these eleven students, nine had little

or no previous programming experience.

Information recorded in the MINIPAS histories was used to develop

protocols of online programming performance for the three-variable sort.

As was true for the swap problem, the online protocols documented 1) the

number of initial compilation attempts prior to obtaining the first

executable version of the program, 2) the number of total compilations

attempted for all program versions, 3) the number of unique executable

versions, 4) specific programming problems encountered by each student,

5) MINIPAS completion time for correct solutions, and 5) final solution

attempts.

Besides the three students who had written correct paper solutions,

an additional nine students (T04, T12, T13, T16, CIO, C12, CIS, C15, C17)

www.manaraa.com

80

generated a correct solution using the MINIPAS programming environment.

Disregarding syntax errors, two more students (COl, Cll) wrote logically

correct solutions to the three-variable sort problem. Of the eleven

students who had logically correct solutions on their final attempt, all

but two (T04, COl) had previous programming experience.

Students averaged 6.75 initial compilation attempts prior to

executing the first version of their program in MINIPAS. The standard

deviation for initial compilation attempts was 7.24 compilations. This

indicated extensive syntax problems and wide differences among students.

The average number of total compilations required to debug the logic for

the sort problem was high at 11.47 with a standard deviation "of 10.58.

Five students (T06, T15, COS, C04, COS) failed to successfully compile

their initial attempts and thus had no executable versions.

The MINIPAS histories disclosed several types of programming

problems encountered by the students. The most prominent problems

involved the syntax of the IF statements. Ten students (TOI, T03, T15,

COl, C02, COS, C04, COS, COS, C09) had trouble correctly formatting the

boolean expressions used in the IF statements. Nine of these students

had little or no previous programming experience. Sixteen students (T02,

T04, T05, T08, T09, TIO, Til, T12, T13, T16, COl, CIO, Cll, C12, C13,

CIS) failed to surround multiple statements in the alternatives of the IF

with the reserved words BEGIN and END. Because the BEGIN/END structure

is not found in languages such as FORTRAN and BASIC, students with prior

programming experience as well as inexperienced programmers made this

error. The order in which comparisons between variables were made and

www.manaraa.com

81

the order in which values were assigned to variables also caused problems

for several other students.

Three students (T05, C03, C15) had unique programming problems. As

previously mentioned, student C03 attempted to store the order of the

values into a single variable. Student T05 tried to use READLNs to

interchange values. Student C16 assumed that the memory locations

labeled A, B, and C were different from the locations of a, b, and c.

In spite of the severity of difficulties that many students

encountered, the protocols of the final solution attempts revealed that

only four students (T14, COl, C07, CIS) implemented a different solution

algorithm than the one used on the initial solution attempt. Only one

(TOI) of the six students whose initial solution algorithm was

indeterminable employed a classifiable algorithm on his final attempt.

Two students (COl, C09) who had not employed a swapping technique on

their initial attempts did so on their final attempts. Eight students

(TOI, T03, C02, COS, C04, C06, COS, CIS) did not employ any swapping

technique on their final solution attempts. Six of these eight students

had no previous programming experience.

All of the students issued at least one IF statement in their final

solution attempts to the three-variable sort problem, but two students

(T03, T05) with no programming experience failed to use any assignment

statements in their final solutions. Six students (T08, T14, COl, COS,

Cll, C13) generated solutions that correctly ordered at least one

specific set of values but did not solve all possible combinations of

www.manaraa.com

82

values. All but one of these students had previous programming

experience.

Treatment group comparisons for the three-variable sort problem

As was true for the swap problem, comparisons between the

performances of the students in the MEMOES and NON-MEMOPS groups were

made for the three-variable sort problem. Concerning their initial

solution attempts, chi-square tests of independence were conducted for

the number of students 1) writing a syntactically correct solution, 2)

writing a solution that was logically correct, 3) attempting to implement

the efficient, "isolate all cases" or "complex shuffle" algorithms, 4)

preserving original values, 5) completing value exchanges before making

additional comparisons and 6) using assignment and IF statements.

For the initial paper solutions, no differences were found between

the groups for the number of logically correct or completely correct

solutions, the number of students demonstrating knowledge that original

values might be destroyed, the swapping technique used to interchange the

values of variables, or the use of assignment and IF statements. The

test statistic for demonstrating knowledge that original values might be

destroyed only approached significance (chi-square =2.15, df = 1, p <

.15). Fourteen students in the MEMOPS group and nine students in the

control group demonstrated this knowledge.

A significant difference was found, however, for the type of

algorithm (efficient, isolate all cases, or complex shuffle) that was

used (chi-square = 6.23, df = 2, p < .05). Whereas seven students in the

control group attempted the "isolate all cases" solution, only one

www.manaraa.com

83

student attempted to use it in the treatment group. Eight students in

the treatment group attempted the "complex shuffle" solution as compared

to four students in the control group. Summary data for the two

treatment groups on the students' initial solution attempts to the three-

variable sort problem are presented in Table 4.

TABLE 4. Number of students exhibiting selected solution features in
their initial solution attempts to the three-variable sort
problem

Solution Features

Group 1 2 3 4 5 6 7

(E) 6
Treatment 2 3 (I) 1 (+) 14 (+) 6 16 (SI) 5
(n=18) (CS) 8 (-) 1 (-) 8 (CI) 12

(E) 4
Control 1 3 (I) 7 (+) 9 (+) 5 16 (SI) 6
(n=18) (CS) 4 (-) 5 (-) 8 (CI) 12

Solution Features:
1 Syntactically and logically correct solutions
2 Logically correct solutions
3 Solutions attempting to implement the efficient (E),

"isolate all cases" (I), and "complex shuffle" (CS) algorithms
4 Solutions with code demonstrating presence (+) or absence (-)

of the principle concerning preservation of values
5 Solutions containing value exchanges that were completed (+) before

additional comparisons were made and those that didn't complete
the exchanges (-) before making additional comparisons

5 Solutions containing assignment statements
7 Solutions containing IF statements with single assignment statements

(SI) or compound assignment statements (CI)

Using the MINIPAS history data, t-statistics were computed on the

average number of initial compilations, number of total compilations, and

www.manaraa.com

84

number of unique versions. No statistically significant differences

between the two treatment groups for the mean number of initial

compilations (t(28) = 1.78, p < .09), total compilations (t(34) = -.02,

p < .99), or the number of unique program versions (t(34) = -.55, p <

.59) were found, â test of homogeneity of variances on the number of

initial compilation attempts indicated that there was a difference

between treatment group variances (F(17,17) = 2.90, p < .04). The

variance of the control group was nearly three times larger than the

variance of the treatment group for this particular characteristic. Chi-

square tests comparing the number of students encountering each of five

specific programming problems again showed no statistically significant

performance differences for the two treatment groups. A summary of the

data recorded in the MINIPAS programming histories is shown in Table 5

for the two treatment groups-

Using data obtained from the MINIPAS histories on the final solution

attempts to the three-variable sort problem, additional comparisons were

made between the treatment groups. These comparisons were made on the

following features: type of algorithm implemented, demonstration of

knowledge that original values might be destroyed, swapping technique

used to exchange variable values, use of assignment and IF statements,

and number of solutions that solved a limited set of values.

As was true for the initial solution attempts, a significant

difference 'was found for the types of algorithms implemented by the

students in the two treatment groups on their final solution attempts

(chi-square = 5.69, df = 2, p < .04). Eight students in the control

www.manaraa.com

85

TABLE 5. MINIPâS history statistics for the three-variable sort
problem

MINIPas History Features

Group Initial Total Unique Programming
Compilations Compilations Versions Problems
Mean S.D. Mean S.D. Mean S.D.

(A) 3 (D) 5
Treatment 4.57 5.03 11.50 12.57 2.28 0.54 (B) 10 (*) 1
(n=18) (C) 6

(A) 6 (D) 5
Control 8.83 8.57 11.44 8.77 2.53 0.50 (B) 6 (*) 1
(n=18) (C) 4

Programming Problems:
(A) IF syntax (boolean expression component)
(B) IF syntax (BEGIN END for compound statements)
(C) Order in swapping code
(D) Order of IF tests
(*) Unique problem

group attempted the "isolate all cases" algorithm as compared to two in

the treatment group. Seven students tried to implement the "complex

shuffle" in the treatment group as compared to two students in the

control group. The chi-square statistics for all of the remaining

features (demonstration of value preservation principle, swapping

technique, use of assignment and IF statements, and number of solutions

that solved a limited set of values) failed to reveal any statistically

significant performance differences between the two treatment groups for

these factors. The frequencies used in these computations are presented

in Table 6.

www.manaraa.com

86

TABLE 6. Number of students exhibiting selected solution features in
their final solution attempts to the three-variable sort
problem

Solution Features

Group

Treatment 6 6 (E) 7 (+) 15 (+) 6 15 (SI) 7 2
(n=lS) (I) 2 (-) 0 (-) 8 (CI) 11

(CS) 7

Control 6 8 (E) 5 (+) 11 (+) 8 18 (SI) 5 4
(n=18) (I) 8 (-) 4 (-) 3 (CI) 13

(CS) 2

Solution Features;
1 Syntactically and logically correct solutions
2 Logically correct solutions
3 Solutions attempting to implement the efficient (E),

"isolate all cases" (I), and "complex shuffle" (CS) algorithms
4 Solutions with code demonstrating presence (+) or absence (-)

of the principle concerning preservation of values
5 Solutions containing value exchanges that were completed (+) before

additional comparisons were made and those that didn't complete
the exchanges (-) before making additional comparisons

5 Solutions containing assignment statements
7 Solutions containing IF statements with single assignment statements

(SI) or compound assignment statements (CI)
8 Solutions solving limited sets of values

Summary of posttest 1_ findings

The first posttest consisted of two Pascal programming problems.

The initial problem required the students to write code to swap the

values of two variables. This problem was easily solved by all but one

of the students who had previously programmed in either FORTRAN or

Pascal. It was a challenge, however, for many of the students with less

experience. The beginning programmers experienced difficulties in

www.manaraa.com

87

formulating the required logic and encountered severe problems with

Pascal syntax.

The total number of syntax problems for the treatment and control

groups were approximately equal; however, the types of errors encountered

were noticeably different. The treatment students made many more "wrong-

way" assignment errors while the control students made a greater number

of errors of other types. The "wrong-way" assignment errors appear to be

directly and logically attributable to the direction of the MOVE

statement that the students used in the MEMOPS program. As a result of

the confusion caused by the direction of the assignment statement, the

time required to complete the problem was much greater for the treatment

students. In contrast to syntax difficulties, logic difficulties

appeared to be slightly more prevalent and more persistent among students

in the control group.

The second problem on the posttest was a three-variable sort

problem. It proved to be much more challenging than the swap problem,

causing both logic and syntax difficulties. The syntax of the IF

statement was particularly troublesome- While the number of difficulties

were greater for the inexperienced programmers, experience was not a

factor in identifying the type of difficulties encountered.

Algorithms chosen by the MEMOPS and NON-MEMOPS groups differed

significantly for the three variable sort. Many students in the NON-

MEMOPS group elected to identify all possible cases and handle each case

separately. This choice necessitated a complex boolean expression within

the IF statements which produced syntax errors- In contrast, many

www.manaraa.com

88

students in the MEMOPS group chose an algorithm similar to what they had

used in the MEMOPS visible sorts. This was a very complex algorithm

resulting in problems of determining correct logic. Also attributable to

this algorithm were syntax errors in the use of BEGIN and END words in

the argument portion of the IF statements.

For both the swap and three variable sort problems, some students

wrote code that destroyed the original values. For the swap problem

three students, all of whom were in the control group, destroyed values.

In dealing with the complexity of the three variable sort problem, six

students wrote code which destroyed at least one of the original values.

Five of these students were members of the control group and one had

experienced MEMOPS. Of the students who preserved values the vast

majority in both groups used two additional variables. This was somewhat

surprising for the MEMOPS students since they had used a single variable

for swapping values throughout their MEMOPS activities.

Posttest 2 Findings

The second posttest was administered after students had been given

instruction on Pascal looping constructs and on array implementation.

This test was divided into two parts which were evaluated separately. On

the first part of the test the students were expected to read and

interpret Pascal code. The problems required identification of incorrect

array declarations, locating boundary violations of arrays addressed

within FOR loops, and computing the final values of arrays after program

execution. There were 29 subitems on this part of the test.

www.manaraa.com

89

The second part of the test consisted of three programming problems.

For these problems the program headings and variable declarations were

provided and the student's task was to supply Pascal code that performed

three specific functions. These functions were 1) comparing the contents

of two arrays, 2) reversing the order of the values stored in a single

array, and 3) sorting the values of an array into ascending order. For

the first two problems students were only asked to write the code, but

for the third problem they were allowed to enter their solutions into the

computer and debug them. A copy of the second posttest as well as a

description of the scoring procedures for each programming problem can be

found in Appendix D.

The mean achievement scores for the MEMOES and NON-MEMOPS students

on both parts of the tests were compared. These scores did not differ

significantly on either the first part of the test (t(27) = -.39, p <

.701) or the second part (t(27) = -.18, p < .859). Group means and

standard deviations for these two scores are reported in Table 7.

Protocols of the solution features of the programming problems on the

second part of the posttest, however, suggested that the MEMOPS students

approached two of the three problems in a different manner than did the

NON-MEMOPS students.

Individual student performance on the 2-array comparison problem

The fifth problem on the posttest required the student to write code

that would sequentially compare the values of the elements of two arrays.

Messages were to be printed following each comparison indicating which

element contained the larger value. The most efficient solution to this

www.manaraa.com

90

TABLE 7. Mean achievement scores and standard deviations for the
second posttest

Part I Part II

Groiips Maximum Mean S.D. Maximum Mean S.D.
Score Score

Treatment 29 21.00 7.40 28 18.50 9.20
(n=14)

Control 29 19.93 7.45 28 17.93 7.82
(n=15)

problem was to use the index variable of a FOR loop to sequentially

compare the elements in the two arrays. This solution is illustrated in

Figure 17. The protocols for this problem documented 1) the correctness

of each student's solution in terms of logic and syntax, 2) use of a FOR

loop to sequentially move through the array, 3) use of an IF statement to

compare cell values and 4) use of an index variable to address the cells

of both arrays. Appendix Tables D-1 and D-2 document the solution

features of the treatment and control groups for this problem.

For I := 1 to MAX Do
Begin
If X[I] > Y[I]

then WriteIn ('X[',I,'] is larger than Y[I,;
If Y[I] > X[I]

then Writeln ('Y[',I,'] is larger than X[',I,']')
End;

FIGURE 17. Solution to the 2-array comparison problem

www.manaraa.com

91

Of the twenty-nine students attempting the comparison problem,

sixteen students wrote syntactically correct solutions. The solutions of

nine more students were logically correct since they used a FOR statement

to sequentially move through the arrays and an IF statement to compare

cell values. The four students who failed to solve this problem

encountered major difficulties with the looping structure. Two students

(TIO, T15) used the indices of two FOR loops to address the array cells

and other student (COS) used an incorrect form of the WHILE structure

(e.g., WHILE I:=l TO 5 DO). Only one student (T09) failed to use a

looping structure in his solution, additional solution errors included

placing a semicolon before an ELSE statement (a syntax error) and

attempting to address a cell using an incorrect index. Students with

prior FORTRAN or Pascal experience tended to write syntactically correct

solutions. The less experienced students wrote logically correct

solutions that contained minor syntax errors.

Individual student performance on the reversal problem

The programming task on the sixth problem was to reverse the

original order of an array's values. Besides filling in the bounds to

the given FOR statement, the student was required to add the code that

would interchange element values. A correct solution to this problem

consisted of writing Pascal code that exchanged the values of the first

and last elements, the second and next-to-last elements, and so forth

until the midpoint of the array was reached. Two slightly different

approaches might be taken to solve the reversal problem.

www.manaraa.com

92

In the first approach, all array elements are addressed directly

using the index of the FOR loop. If MAX is defined to be the size of the

array and I is the index variable, X[I] would be interchanged with X[MaX

+ 1 - I]. A solution that uses an index variable to address both

elements is shown in Figure 18.

For I := 1 to Max DIV 2 do
Begin
TEMP := X[I];
X[I] := X[MaX+l-I];
X[MaX+l-I] := TEMP
End;

FIGURE 18. Single index solution to the reversal problem

A second approach to the problem would be to use two different

variables rather than one to address the cells of the array. The index

of the FOR loop is used to address one of the array cells and a second

variable is used to address the other cell. This second variable is

assigned the value of the constant MAX before the first pass is made

through the loop and decreased by one for each additional pass. A

solution that uses two variables to address the elements of the array is

shown in Figure 19. As was true for the first solution, MAX has been

defined to be the size of the array.

Protocols for the reversal problem documented correctness of

solution in terms of logic and syntax, algorithm implementation (single

index, two-variable, or indeterminate), knowledge of the principle

concerning the need to preserve values when new assignments are made, use

www.manaraa.com

93

J := MaX;
For I := 1 to MAX DIV 2 do

Begin
TEMP := X[I] ;
X[I] :=X[J];
X[J] := TEMP;
J := J-1;
End;

FIGURE 19. Two-variable solution to the reversal problem

of correct bounds in the FOR statement, and number of additional memory

locations used for preserving original values. Credit for correct logic

was awarded if the student wrote only assignment statements to complete

the solution. Credit for use of correct bounds was awarded if the bounds

were expressions evaluating to one and five. Appendix Tables D-1 and D-2

document the solution features for this reversal problem.

Nine students (T04, Til, T12, T14, T16, T17, C06, C14, C17) wrote

correct solutions to the reversal problem. Five more students (COS,

CIO, Cll, C12, CIS) wrote solutions that were logically correct. Of

these fourteen students who wrote correct or logically correct solutions,

only three (T04, COS, COS) had no previous programming experience. The

nineteen students who were unable to solve the reversal problem

encountered a variety of difficulties. Sixteen students wrote incorrect

bound values to the FOR statement and seven students (T09, T15, C02, COS,

COS, C09, CIS) failed to use a free memory location to preserve values.

Other errors included attempts to use two FOR loops to sequentially move

through the array (TIS, T18, C16), ordering errors in the assignment

statements that exchanged values (T02, COS, CIS) and misplacement of

www.manaraa.com

94

initialization statements with respect to the body of a FOR loop (Cll,

C12).

Seventeen students attempted to solve the reversal problem using the

single index algorithm. Eight, all of whom had previous FORTRAN or

Pascal experience, attempted to use the two-variable approach. The

algorithms of five students (T09, T15, COS, C09, CIS) were not

classifiable.

Treatment group comparisons on the 2-array comparison and reversal

problems

The comparison problem was very easy for most students- Logically

correct solutions were produced by all but three students in the

treatment group and one student in the control group. A nearly equal

number of students in both groups wrote logical solutions that contained

syntax errors (four in the treatment group, five in the control group).

No performance differences were found for use of a FOR and an IF

statement, nor for using the index variable of the FOR loop to address

the elements of both arrays. Thus, no programming differences between

the groups were revealed on the comparison problem-

Although the differences were not statistically significant, the

more experienced students in the the two groups did appear to approacn

the reversal problem in a slightly different manner. Of the tnirteen

students in the treatment group whose solution algorithms could be

classified, ten attempted to implement the single index algorithm. For

the control group, students writing classifiable algorithms were more

evenly split with seven using the single index algorithm and five

www.manaraa.com

95

attempting the two-variable algorithm. Two students in the treatment

group failed to demonstrate the need for preserving original values, as

opposed to five students in the control group. Students in both groups

who did realize the need for preserving original values used only one

additional variable for this purpose.

Individual student performance on the ascending sort problem

The programming task for the seventh problem was to reorder the

values of an array into ascending order. The student was given an

incomplete program that contained the declarations and statements that

would read values into a six-cell array. The student's task was to add

the code that would reorder the values so that the first cell (X[l])

contained the smallest value originally stored in the array aud the sixth

cell (X[6]) contained the largest value. Efficient solutions to the

problem require the use of loops to sequentially compare cell values and

interchange them if they are out of order.

Prior to the second posttest, all students had been conceptually

introduced to two different sorting algorithms, a selection sort and a

bubble sort. This introduction focused on differences in problem

representation between the two algorithms, not upon any Pascal coding

implementations. In fact, students were not shown any coding details for

either algorithm. The content of the introduction was similar in nature

to the operational descriptions of the algorithms that follow, sans

references to Pascal coding statements.

In a selection sort, an element is selected and compared to each

subsequent element in the array. After each comparison, values of the

www.manaraa.com

96

two elements are interchanged if the test element is larger than the

comparison element. On the first pass through the array, the first

element is selected as the test element and compared to all other

elements in the array. On the second pass, the second element is

selected as the test element and is compared to the remaining values

stored in the array. This process, of selecting a test element and

comparing it with all subsequent elements, is repeated until all of the

values are reordered.

Figure 20 graphically illustrates a selection sort. The arrow to

the left of each array denotes the test element for a particular pass and

the arrows to the right mark the comparisons that are made between the

test element and the remaining elements. Note that the effect of this

algorithm is to fill the array with the reordered values from top to

bottom.

The Pascal code to implement the selection sort for reordering array

values in ascending order is shown in Figure 21. The index variable of

the outer FOR loop (I) is used to select the test element for each pass.

The index variable of the inner FOR (J) is used to address the subsequent

elements that will be compared to the test element. MAX is a constant

defined to be the size of the array.

In the bubble sort, multiple passes through the array are also made.

However, the values of successive pairs of adjacent elements are compared

and, if found to be out of order, are interchanged. The first pass

begins with a comparison of elements one and two and continues until

elements five and six have been processed. The second pass begins with

www.manaraa.com

97

Ordered

Unordered

FIGURE 20. Graphical illustration of a selection sort

For I := 1 to KaX-1 do
For J := I+l to MAX do

If X[I] > X[J]
then begin

TEMP := X[I];
X[I] :=X[J];
X[J]:= TEMP
end;

FIGURE 21. Pascal code for implementing a selection sort (ascending
order)

the same comparison of elements one and two and continues through the

array. Since the first pass "bubbled" the largest value down to cell

www.manaraa.com

98

six, the second pass terminates with a comparison of cells four and five.

The remaining passes repeat the process until the array is reordered. A

bubble sort is illustrated in Figure 22. Note that it has the effect of

reordering the array from bottom to top.

(4)

(3)

(5) (after 5)

Ordered

Unordered

FIGURE 22. Graphical illustration of a bubble sort

The Pascal code for implementing a bubble sort is shown in Figure

23. Although two FOR loops are used to process the array, only one index

variable is used to address the array cells. The outer FOR controls the

number of passes that will be made through the array. The index variable

of the inner FOR is used to denote which adjacent elements are being

www.manaraa.com

99

compared at a given time (X[J] and X[J+1]). The computation M&X-I, where

Max is defined as the size of the array, determines how many comparisons

will actually be made on each pass. At the end of the first pass the

last cell will contain the largest value. At this point, comparisons

between the last cell and all other cells become unnecessary. In fact,

each subsequent pass through the array requires one less comparison than

the previous pass since the largest value always "bubbles" down to the

last comparison element.

For I := 1 to MAX-1 Do
For J := 1 to MAX-I Do

If X[J] > X[J+1]
then Begin

TEMP := X[J];
X[J] := X[J+1] ;
X[J+1] := TEMP
End;

FIGURE 23. Pascal code for implementing a bubble sort (ascending
order)

The protocols of the students' initial attempts to the ascending

sort problem documented several solution features. These features were

1) correctness of solution in terms of syntax and logic, 2) correctness

of solution in terms of logic only, 3) algorithm implementation

(selection sort, bubble sort or indeterminate), 4) preservation of

original element values, 5) efficiency in terms of the number of passes

made through the array, 6) efficiency in terms of the number of

comparisons per pass, 7) use of nested looping structures, 8) use of an

www.manaraa.com

100

IF statement to compare element values and 9) use of assignment

statements to interchange values were also recorded. A logically correct

solution was defined to be a solution that contained two nested FOR

loops, correct use of index variables to address array elements, and use

of assignment statements to exchange element values. Appendix Tables D-3

and D-4 document the solution features of the students for the ascending

sort problem.

Determining the bounds of the FOR loops on either the selection or

the bubble sort is a difficult task for beginning students. Incorrect

determination of bounds can result in too many or too few passes through

the array, unnecessary or insufficient comparisons, or "out-of-range"

runtime errors. Since incorrect bounds had the potential for causing the

processing errors noted, the efficiency of the bounds was documented in

the protocols.

The initial paper solutions of only four students (T12, T17, C06,

C12) were syntactically and logically correct. Ten more students (T02,

T04, Til, T13, T16, T18, C13, C14, CIS, C16) wrote solutions that

exhibited correct logic. Of the fourteen students with logically correct

initial solutions, only three (T02, T04, C06) had no prior FORTRAN or

Pascal programming experience. Algorithm selection was fairly evenly

divided among the students. Eleven students (T02, T04, TIO, T14, T16,

T17, T18, COS, CXI, C14, CIS) attempted the selection sort and twelve

(T09, Til, T12, T13, C02, C03, COS, C06, C12, C13, CIS, C17) attempted

the bubble sort. The algorithms of six students (T03, TOS, T15, COS,

CIO, CIS) could not be classified. A pattern between previous

www.manaraa.com

101

programming experience and algorithm selection was not apparent from the

data.

The two most obvious errors in the student's initial solution

attempts were failure to preserve original values and failure to use

nested looping structures. Seven students (T03, T09, T14, T15, C02, COS,

COS) made no effort to preserve original values. Eleven students (T03,

T05, T09, T15, C03, COS, COS, C09, CIO, C17, CIS) failed to use nested

loops. The use of an IF statement to compare values and assignment

statements to exchange values by nearly all students demonstrated that

the functions of these statements were fairly well-understood.

Very few students wrote bound expressions that, when executed, would

efficiently process the entire array regardless of the array's initial

values. Twenty-three students issued inefficient bounds for the FOR loop

that controlled the number of passes that would be made through the

array. Of the six students who issued efficient bounds, only one (T02)

had no previous programming experience. Twenty-seven students wrote

inefficient bound expressions for the loop that controlled the number of

comparisons per pass. Again, the two students (T14, T17) who did issue

efficient bounds for the comparisons had previous programming experience.

Consistent with earlier programming protocols, the online

programming protocols for the ascending sort problem documented 1) the

number of initial compilation attempts prior to obtaining the first

executable version of the solution, 2) the number of total compilations

attempted across all program versions, 3) the number of unique executable

versions, 4) specific programming problems encountered by the students.

www.manaraa.com

102

5) a MINIPAS completion time if a correct solution was generated, and 6)

the student's final solution.

Students averaged 3.14 initial compilation attempts on the ascending

sort problem. The standard deviation for the initial compilation

attempts was 2.36. These statistics were much lower than those found for

the three-variable sort problem. The average number of total

compilations attempted was 6-93 with a standard deviation of 5.64. The

mean number of executable versions per student was 2.86 with a standard

deviation of 1.83 versions.

The modifications made by each student in attempting to program a

correct solution to the ascending sort problem in MINIPAS were analyzed

to determine the specific programming problems encountered by each

student- Other than syntax errors, the most common code modifications

included alterations to the bounds of the looping indices and the

addition or deletion of a looping structure- Nine students (T03, T05,

TIO, COS, C09, CIO, Cll, C17, CIS) consistently added or deleted looping

structures in attempting to develop a solution that would properly

process the array- Bounds on the looping structures were troublesome for

thirteen students (T02, T03, T05, TIO, T16, T18, C02, C03, COS, C13, C14,

CIS, C15)- Syntax was a major problem for eight students (T02, T03, Til,

T15, C03, COS, Cll, CIS). Six students (T02, T09, TIS, C02, C03, Cll)

struggled with the formats of IF statements. Only three students (T02,

T14, TIB) made modifications to the assignment statements that exchanged

values.

www.manaraa.com

103

In addition to the four students who had correct paper solutions,

ten more students (T04, Til, T14, T15, T18, COS, Cll, C14, CIS, C16)

generated correct solutions using the MINIPAS compiler. The final

solutions of three students (T13, C09, C13) were logically correct, but

due to an incorrect bound on one of the FOR loops didn't completely

process the entire array. Of the fourteen students who wrote logically

correct solutions only three (T04, COS, C06) had no previous programming

experience.

Protocols of the final solutions also showed that seven students

(T03, TIS, C02, COS, C09, CIO, CIS) who hadn't used nested loops in their

original solutions used them in their final solutions. One of the seven

students who failed to preserve values on the initial attempt did so on

the final solution attempt (T14). Besides the two students who initially

used efficient bounds on the inner FOR loop, three more students (T04,

T16, T18) used them on their final solutions.

The number of students opting to use either the selection or the

bubble sort did not change dramatically between initial and final

solution attempts. Twelve students tried to implement a selection sort

and thirteen students tried to implement a bubble sort on their final

solutions. Four students (T03, TOS, TIS, CIO) whose algorithms on the

initial solution attempts could not be classified made some progress in

implementing either the selection or the bubble sort on their final

attempts. Three students (T09, COS, C03, CIS) wrote final solutions

whose algorithms could not be classified.

www.manaraa.com

104

Treatment group comparisons on the ascending sort problem

Chi-square statistics for nine solution characteristics were

computed to determine whether there was any performance difference

between the treatment groups on the students' initial solution attempts

to the ascending sort problem. These nine characteristics included

correctness of solution and logic, algorithm implementation (selection or

bubble sort), preservation of original values, use of specific types of

language statements (nested loops, IF and assignment statements), and

efficiency of boundary expressions. The frequency counts used in all but

one of the tests were the number of solutions in each group that

exhibited the characteristic versus the number that did not. For the

algorithm characteristic, indeterminate solutions were ignored and only

the number of solutions containing the bubble or selection sort

algorithms were used. Frequencies used in the chi-square tests are

reported in Tables 8.

Although no statistically significant differences were found for any

of the nine characteristics on the initial solution attempts, the chi-

square statistic for type of algorithm attempted approached significance

(chi-square = 2.11, df = 1, p < .15). Seven students in the MEMOES

treatment group initially attempted the selection sort as compared to

only four students in the NON-MEMOPS control group. Eight students in

the control group attempted the bubble sort as compared to only four in

the treatment group.

T-tests comparing the treatment groups on number of MINIPAS

compilation attempts and number of unique program versions were conducted

www.manaraa.com

105

TABLE 8. Number of students exhibiting selected solution features in
their initial solution attempts to the ascending sort
problem

Solution Features

Groups 1 2 3 4 5 6 7 8 9

Treatment
(n=14)

2 8 (S)
(B)

7
4

10 10 14 14 4 2

Control
(n=15)

2 6 (S)
(B)

4
8

12 8 15 14 2 0

Solution Features:
1 Syntactically and logically correct solutions
2 Logically correct solutions
3 Solutions attempting to implement the selection sort (S)

and bubble sort (B)
4 Solutions with code demonstrating knowledge of the

principle concerning preservation of values
5 Solutions containing nested loops
6 Solutions containing IF statements
7 Solutions containing assignment statements
8 Solutions exhibiting an efficient number of passes through array
9 Solutions exhibiting an efficient number of comparisons per pass

to determine whether there was a difference in programming performance on

the problem. The means and standard deviations used in performing the t-

tests are shown in Table 9. There was not a statistically significant

difference between the groups on number of initial compilation attempts,

number of total compilation attempts, and number or unique versions

attempted. No significant differences between groups on types of

programming problems were apparent either.

Summary information for the two treatment groups on the final

solution attempts to the ascending sort problem is presented in Table 10.

www.manaraa.com

105

TABLE 9. MINIPAS history statistics for the ascending sort problem

MINIPAS History Features

Initial Total Unique Code
Groups Compilations Compilations Versions Modification

Mean S.D. Mean S.D. Mean S.D.

(A) 4 (D) 3
Treatment 3.14 2.25 7.36 7.07 2.79 1.76 (B) 3 (E) 3
(n=14) (c) 6 (*) 1

(A) 5 (D) 3
Control 3.13 2.53 5.53 4.10 2.93 1.94 (B) 6 (E) 0
(n=15) (C) 7 (*) 2

Code Modifications :
(A) Syntax
(B) Loops added or deleted
(C) Bounds on loops
(D) If statement
(E) Swapping components
(*) Unique changes

The nine characteristics used in comparing the groups were the same as

those used for the initial attempts. Nonsignificant chi-square

statistics suggested that the final solution attempts of students in the

MEMOPS group did not differ statistically from the final attempts of the

students in the NON-MEMOPS control group. The pattern concerning

algorithm implementation noted for the initial attempts was not as

prominent on the final attempts.

www.manaraa.com

107

TABLE 10. Number of students exhibiting selected solution features in
their final solution attempts to the ascending sort problem

Solution Features

Groups 1 2 3 4 5 6 7 8 9

Treatment
(n=14)

7 2 (s)
(B)

7
6

11 12 14 14 4 5

Control
(n=15)

7 2 (S)
(B)

5
7

11 12 15 15 2 0

Solution Features:
1 Syntactically and logically correct solutions
2 Logically correct solutions
3 Solutions attempting to implement the selection sort (S)

and bubble sort (B)
4 Solutions with code demonstrating knowledge of the

principle concerning preservation of values
5 Solutions containing nested loops
6 Solutions containing IF statements
7 Solutions containing assignment statements
8 Solutions exhibiting an efficient number of passes through array
9 Solutions exhibiting an efficient number of comparisons per pass

Summary of posttest 2 findings

The second posttest was divided into two parts and each was scored

separately. For both parts of the test, the mean scores of the students

in the MEMOES treatment group did not differ significantly from the

scores of the students in the NON-MEMOPS control group. Protocols of the

students' attempts to generate Pascal code for two 'of three programming

tasks suggested potential differences in the way the students approached

these tasks.

Twenty-five of the twenty-nine students were able to write logically

correct solutions to the comparison problem. No differences between the

www.manaraa.com

108

treatment groups were apparent from studying the student protocols of the

comparison problem. It was noted, however, that students with previous

FORTRAN or Pascal programming experience wrote syntactically correct

solutions whereas the students with little or no programming experience

wrote solutions that were logically correct, but contained minor errors

in syntax.

The reversal and ascending sort problems proved to be more

challenging for all of the students. Only half of the students wrote

logically correct solutions to the reversal problem. Furthermore, a

pattern in algorithm selection was noted for the students in the MEMOPS

treatment group. For the solution attempts containing classifiable

algorithms, a majority of the treatment group students attempted the

single index algorithm. A similar pattern was not apparent for the

students in the NON-MEMOPS control group. Bounds on the FOR loop proved

to be troublesome to all students regardless of prior programming

experience. In spite of the demonstrated ability to exchange values on

previous exercises, seven students on both the reversal and ascending

sort problems failed to use this technique.

A difference between the treatment groups in initial algorithm

implementation for the ascending sort was also suggested. For the MEMOPS

treatment group, the number of students initially attempting to implement

the selection sort was nearly twice the number of students who attempted

the bubble sort. An opposite pattern was true for the NON-MEMOPS control

group as more of them chose to initially implement the bubble sort over

www.manaraa.com

109

the selection sort. These patterns were not as evident, however, on the

final solution attempts.

Summary

In this chapter, a description of students' behavior as they

progressed through a series of Pascal programming experiences was

presented. The difficulties students encountered as well as procedural

approaches they used were explored. The students were tracked both

individually and in groups.

Prior to the study, approximately half of the students had engaged

in some programming activities. As an initial activity of this study,

half of the experienced and half of the inexperienced programmers were

exposed to a manipulative computer model (MEMOPS) which was designed to

facilitate the learning of programming. Students were classified by

prior programming experience as well as MEMOPS exposure and the protocols

of the resulting groups were then contrasted. The subjects in this study

consisted of one female and thirty-five male students.

www.manaraa.com

110

CHAPTER V: SUMMARY, DISCUSSION, RECOMMENDATIONS AND CONCLUDING REMARKS

Summary

The goals of this study were threefold. The first was to document

programming behavior in an attempt to learn more about the novice's

preconceptions and intuitions about programming. The second was to

evaluate the effects on student learning of a manipulative computer model

used prior to formal instruction on computer programming. The third and

final goal was to evaluate the use of protocols as tools in studying

programming behavior.

The study was conducted using a posttest quasi-experimental design.

A matching strategy based upon responses to questionnaire items was used

to assign students to pairs. After the students had been matched, one

member of each pair was randomly assigned to the treatment group and the

other member was assigned to the control group. Next, the students in

the treatment group completed a series of "programming-like" tasks using

a manipulative model of computer memory operations, while students in the

control group worked through a placebo lesson. Instruction and

programming activities that focused on elementary memory operations and

Pascal declaration, assignment, and IF statements followed. The first

posttest was then administered. Later in the semester, after students

had been formally introduced to array data structures and Pascal looping

constructs through classroom presentations and programming activities, a

second posttest was administered.

www.manaraa.com

Ill

The findings of this research must be considered tentative. The

sample size was small and the analyses were primarily post hoc. However,

the findings should serve as directions for future investigations. Based

upon the data collected and the analyses performed, the findings were:

1. Novice programmers did not intuitively apply an accurate

model of computer memory operations.

2. When the novice was faced with a challenging programming

task that required the creative application of programming

knowledge, newly learned techniques were frequently neglected.

3. The syntax as well as the semantics of computer statements

must be learned fay beginning programmers. Once learned,

there was an initial tendency to undergeneralize followed by

a tendency to overgeneralize the functions of statements.

4. Compared to the number of changes that students made in syntax

and logic, the algorithm or overall approach to a problem was

changed much less frequently.

5. Novice programmers appeared to expect computers to process

information in a manner similar to the way humans process

information.

5. The choice of algorithms of the treatment students was

significantly influenced by their MEMOPS experience.

7. Posttest scores measuring syntax accuracy, the ability to

www.manaraa.com

112

hand-execute a Pascal program, and the ability to success­

fully program a solution to the given tasks were not affected

by the MEMOPS experience.

8. The conflict between the left-to-right direction of the

MEMOPS MOVE statement and the right-to-left direction of the

Pascal assignment statement was a problem for several of the

students in the treatment group.

Discussion

This discussion is divided into three subsections, one for each of

the study's primary areas of investigation. In the first subsection the

findings that illustrate some of the preconceptions that novices have

about programming are discussed. The effects of the MEMOPS experience

that were found by comparing the programming performances of the two

experimental groups are discussed in the second subsection. In the third

subsection the usefulness of programming histories in examining novice

programming behavior is discussed. The format for these subsections will

be to restate the findings and discuss each independently.

Preconceptions of novices and the learning of programming concepts

1. Novice programmers did not intuitively apply an accurate

model of computer memory operations.

www.manaraa.com

113

The MEMOES lesson was designed to provide a programming-like

environment that would give novices an early opportunity to explore their

own intuitive models of memory. These models were first challenged as

the students attempted to solve the MEMOES swap task. Nearly all of the

less experienced programmers attempted to exchange element values by

moving the value of the first cell into the second, and then moving the

value of the second cell into the first. Similarly, some of the

nonexperienced programmers in the control group initially implemented a

similar algorithm for the Pascal swap problem. The fact that many of the

novices in both groups failed to preserve a value before performing the

exchange indicates that they possessed an inadequate model of computer

memory operations. This finding, although not particularly profound,

does verify that the treatment in this study, the MEMOES lesson, did

force the students to test their existing models of memory, whatever

those models may have been.

2. When the novice was faced with a challenging programming

task that required the creative application of programming

knowledge, newly learned techniques were frequently neglected.

The novices in the treatment group learned the technique for

exchanging values and used it repeatedly in completing the MEMOES sorting

activities. These same students also successfully solved the Eascal swap

task with only minor language translation problems (the "wrong-way"

error). Yet, their initial programming efforts on the more difficult

problems indicated that they did not automatically nor consistently

www.manaraa.com

114

generate the sequence of assignment statements that correctly preserved

and exchanged values. The students often temporarily lost the mechanics

involved in translating this thought into actual Pascal programming

statements. The programming behaviors for the control students on the

Pascal swap problem and stAsequent programming tasks reflected a similar

inconsistency-

Two additional behaviors documented in the protocols support the

finding that novices neglected to use previously learned techniques as

programming tasks became more difficult. First, although many students

used the "keeps best" technique to locate a single value for the two

hidden selection tasks, less than half of the students used it to

determine the order of the unknown values in the hidden sorts. Second,

even though the treatment students had performed the MEMOPS swap using

the efficient technique of preserving a single value before performing

the exchange, they chose to implement the less efficient technique of

copying both values into unused cells in their final Pascal solutions.

These noted inconsistencies in programming behavior support Shell's view

that "the difficulty of programming is that it.is a very nonlinear

function of the size of the problem."

Sheil (1981) has objected to characterizing programming as a "linear

aggregation of difficulties" (p. 117). The inconsistent programming

behaviors of the novices across several of the different programming

tasks indicate that the students not only failed to utilize previously

acquired techniques, but also failed to develop algorithms even though

knowledge of the necessary language statements was present. The

www.manaraa.com

115

solutions to the swap and comparison problems were fairly straightforward

in that a naive understanding of the function of one or more primitive

Pascal programming statements was apparently all that was required to

generate a solution for either of these tasks if one was not immediately

known- In other words, the solutions to these two problems were not far

removed from the underlying transactions of the coding statements

themselves. For the swap problem, all that was required to solve the

problem was a simple understanding of assignment and READLN statements.

For the 2-array comparison problem, similar knowledge of the functions of

FOR loops, IF statements, and index variables in addressing array

elements was evidently enough to generate a correct solution.

In contrast, the programming solutions to the three-variable sort,

reversal, and ascending sort problems were much more challenging.

Although one might expect some difficulty programming solutions to these

problems because they required more complex algorithms, what was

unexpected was the fact that students who had successfully solved the

swap or comparison problem minutes before failed to write code that

indicated they recognized that these same tasks were features of the

solutions to the more difficult problems- A naive understanding of

primitive Pascal statements as well as just having solved a problem that

was a sub task of the present problem were not enough to help the students

generate algorithms that would solve the more difficult problems. These

programming tasks were not slightly more difficult for just a few

students, as one would predict if programming could be characterized as a

www.manaraa.com

116

"linear aggregation of difficulties", they were substantially more

difficult for many of the students in both groups.

3. The syntax as well as the semantics of computer statements

must be learned by beginning programmers. Once learned,

there was an initial tendency to undergeneralize followed

by a tendency to overgeneralize the functions of statements.

In the MEMOPS swap, nearly all of the nonexperienced programmers

used the Z location to temporarily presezrve a value. This behavior was

not unexpected since the students had been required to use Z in the

previous two tasks to store an array's smallest or largest value.

Students with prior programming experience, however, used the third

element of the array to preserve the value. Unlike the novices, the more

experienced programmers appeared to possess more flexible knowledge

regarding language statements and used the closest available location for

storing the value.

Three unique behaviors documented in the three-variable programming

protocols illustrate the difficulty novices had in overgeneralizing

language statements. One novice attempted to use a READLN statement in

place of assignment statements to reorder values (READLN (A,C,B)).

another student creatively tried to assign the order of the values to a

single variable (D := A,C,B). Several students attempted to use compound

logical expressions such as IF A>B>C — to determine the relational

order of values. Each of these behaviors indicates that novices often

www.manaraa.com

117

tend to overgeneralize the functions of language statements and that the

limitations of a statement is a source of difficulty.

4. Compared to the number of changes that students made in

syntax and logic, the algorithm or overall approach to

a problem was changed much less frequently.

Of the students whose initial solution algorithms could be

classified, only two switched to a different algorithm for the swap

problem, four switched for the three-variable sort, and one switched for

the ascending sort problem. This finding provides some information about

what students do after they correct their syntax errors and before they

get their programs to work correctly. Since very few students switched

algorithms, it would appear that they spend very little time re-examining

their general approach to the problem by comparing it to alternative

approaches. Instead, novices seemed to spend time trying to get their

approach to work and only switched algorithms as a last resort. Novices

do not appear to realize that algorithm development is the key to

programming. To them, the mechanics of making the computer implement the

algorithm is all encompassing.

In studying some of the mental processes that underlie the ability

to solve verbal analogies, Sternberg (1986) found that students who could

successfully complete the analogies spent their problem-solving time

differently than the students who were unable to correctly complete the

analogies. Specifically, the successful students spent more time

initially thinking about the problem, "taking in information in order to

www.manaraa.com

118

ensure that they had encoded the information richly and in detail" (p.

74). The findings of this study are consistent with Sternberg's. The

novice programmers who were unsuccessful in generating correct solutions

to the more difficult programming tasks spent much of their time

modifying syntax and logic, trying to make an algorithm that was not

initially well thought-out work.

5. Novice programmers appeared to expect computers to process

information in a manner similar to the way humans process

information.

A common analogy that programming instructors make is that

programming a computer is like giving instructions to another human

being. Sheil (1982) maintains that such an analogy "encourages its users

to rely much more on their expectations of the hypothetical agent (the

person following the instructions) than on the instructions themselves,

whereas the mechanical reality is just the opposite" (p. 85). When

instructing another person on a particular task, one relies on that

person's existing knowledge and his ability to make inferences about

information that has been left out. Unlike humans, computers cannot yet

"fill in the gaps".

In using MEMOES, students frequently entered versions of commands

that appeared to require "human" types of understanding on the part of

the computer. For example, novices used words like "swap" and "sort" in

an attempt to solve the swapping and sorting tasks. They also used "MOVE

5" instead of "MOVE X[3] " where 5 was the value of X[3]. While these

www.manaraa.com

119

might be inadvertent errors, the students seemed surprised by the

computer's lack of understanding.

On the MINIPAS tasks, two algorithms that were attempted were close

adaptations of common human processing practices. For the three-variable

sort, both the "complex shuffle"- and "isolate all cases" algorithms were

better suited for humans than machines. The "complex shuffle" involved

remembering which actions had been previously performed. The "isolate

all cases" algorithm was an extension of determining specific

relationships and then specifying independent actions. Many of the

algorithms that were unclassifiable also appeared to feature human

processes that did not easily adapt to Computers, indicating that the

students had not yet modified their thinking to accommodate the

computer's limited capabilities.

Whereas humans rely on memory and the ability to effortlessly

process conditional information, computers rely on repeating single

processes many times. Processing tasks, such as selecting and sorting

that humans ordinarily take for granted, must be unnaturally broken down

into a simplified, well-specified repetitive process that the computer

can handle. Recognizing the differences between human and computing

processing techniques and modifying one's thinking to accommodate these

differences may be critical to the learning of programming.

Effects of the MEMOPS experience on programming performance

5. The choice of algorithms of the treatment students was

significantly influenced by their MEMOPS experience.

www.manaraa.com

120

The most notable impact of the MEMOPS experience was its apparent

influence on algorithm implementation for the more difficult programming

tasks. The algorithms attempted by the treatment students for the three-

variable and ascending sort problems were similar to the ones that the

students had implemented in completing the MEMOPS tasks. In the visible

sorting tasks, the treatment students reordered values by visually

inspecting them and shuffling those that were out of order. The "complex

shuffle" that these same students tried to implement appeared to be an

attempt to translate this approach into a series of Pascal instructions.

Sequentially filling arrays from top to bottom and the use of a "keeps

best" technique to locate desired values were two additional features of

the MEMOPS solution algorithms. These techniques are also features of

the selection sort that many of the treatment students initially tried to

implement for the Pascal ascending sort problem.

Whereas the treatment novices attempted the "complex shuffle"

algorithm for the three-variable sort, the control novices tried to

implement the "isolate all cases" algorithm. A comparison of the

underlying features of these two algorithms reveals that the students of

the two experimental groups may have been operating at different

conceptual levels of problem representation. The "isolate all cases"

algorithm can be characterized by a first-level analysis of the three-

variable sort, namely that the solution must account for all possible

value combinations. Not only does the "complex shuffle" algorithm

demonstrate an awareness of this initial analysis, but also an awareness

www.manaraa.com

121

of a second-level analysis that goes beyond the six specific instances to

a class of instances. Although unduly complex, the shuffle algorithm

reflects an attempt to seek a much more elegant solution to the three-

variable sort problem.

The algorithms implemented for the reversal problem also suggest

different levels of procedural reasoning ability. Although not

statistically different, the proportion of treatment students choosing to

implement the single-index algorithm for this problem was greater than

the proportion of control students attempting this algorithm. The

distinguishing characteristic between the single-index and two-variable

algorithms is the naming scheme used to address the elements of the

array. The use of a single index variable to address all elements of an

array probably reflects a higher level of procedural reasoning ability

and more flexibility regarding the functions of variables in programming.

As was true for the three-variable sort problem, students in the two

experimental groups initially attempted different algorithms for the

ascending sort problem. Whereas a majority of the treatment students

initially attempted the selection sort, the control students attempted to

implement the bubble sort. Just as the "complex shuffle" demanded a

level of procedural reasoning that the treatment students did not yet

possess, so did the selection sort. An incorrect starting value for a

looping index in the bubble sort could likely result in an "out of bound"

runtime error. In contrast, an incorrect starting value in the selection

sort could result in "undoing" the ordering that had just been done.

www.manaraa.com

122

This proved to be a catastrophic problem for the treatment novices and

many were unable to resolve it.

The finding that the treatment students initially attempted more

complex algorithms than did the control students for the more difficult

problems parallels one of Mayer's findings. Using a similar experimental

design, Mayer (1981) found significantly different programming

performances between groups of students who had received a computer model

before instruction and those who did not receive the model. More

specifically, his findings indicated that the students receiving the

model excelled in solving problems requiring far transfer and students

who did not receive the model did as well or better on problems of near

or moderate transfer. The programming behaviors reported in this study

are consistent in that no performance differences (other than the "wrong-

way" assignment problem) were found for the simpler problems, but

significantly different algorithms were attempted by the students in the

two groups for the more difficult programming tasks.

7. Posttest scores measuring syntax accuracy, the ability to

hand-execute a Pascal program, and the ability to success­

fully program a solution to a given task were not affected

by the MEMOPS experience.

The types of questions that were presented on the two posttests were

typical of those that many programming instructors use to evaluate

programming knowledge. These questions required the student to generate

Pascal code that would perform selected programming tasks, identify

www.manaraa.com

123

illegal array declarations and run-time errors caused by inappropriate

index values, and trace the execution of a program and state the final

values stored in an array. The posttest scoring procedures that were

used were also typical of those utilized by programming instructors.

Students were awarded full credit for syntactically correct responses and

partial credit for the presence of certain "desirable" solution features.

k comparison of the posttest scores of the students indicated no

differences between experimental groups for syntax accuracy, the ability

to hand-execute a Pascal program, and the ability to successfully program

a solution to a given task. Traditional evaluation techniques were not

useful in measuring the effect of the MEMOPS experience. Two factors,

however, may have had a moderating effect on posttest performance.

One of the factors that may have masked potential differences

between the experimental groups was the design of the MÏNIPAS programming

environment. Like MEMOPS, MINIPAS displayed variables and their values.

It also displayed the program as it was being executed. By stepping

through the program one statement at a time, the control students could

have acquired an understanding of memory operations that the MEMOPS

lesson was designed to promote. This factor could have raised their test

scores.

The tendency of the treatment group to choose more complex

algorithms may also have masked group differences. In the three-variable

sort, reversal, and ascending sort problems more students in the

treatment group attempted sophisticated algorithms than did students in

the control group. Attempting such complex algorithms may have lessened

www.manaraa.com

124

the treatment students' chances for producing successful solutions.

8. The conflict between the left-to-right direction of the

MEMOPS MOVE statement and the right-to-left direction of

the Pascal assignment statement was a problem for several

of the students in the treatment group.

The finding that was most surprising to the designers of the MEMOPS

lesson was the conflict that the treatment students experienced

concerning assignment direction. Whereas these students failed to

unconditionally transfer the efficient swap technique to the Pascal swap

problem, they did impose the left-to-right direction rule of the MEMOPS

MOVE statement onto the Pascal assignment statement. The implication of

this finding addresses a very important issue regarding the design of

models and simulations, which is the degree to which a model must remain

true to the event it simulates.

All models and simulations, by their very nature, make concessions

concerning reality. These concessions many times are a simulation's

strengths in that by stripping away some of the noncritical, technical

and superficial complexity of reality, they allow the user to focus upon

what is fundamental to the object or process being modeled. The purpose

of the MEMOPS lesson was to provide a manipulative model of computer

memory that could be used to test the student's intuitive model of

memory. Students did possess incorrect intuitions about copy operations,

but the MEMOPS environment forced them to alter these models to

accommodate the copy's destructive property. Furthermore, the MEMOPS

www.manaraa.com

125

environment was consistent with the Pascal environment. As a result,

this caused only minor sequencing problems for the treatment students on

subsequent Pascal programming tasks.

In contrast, the direction of the Pascal assignment statement

differs from the pattern of left-to-right direction which is predominant

in our every-day lives. Unfortunately the MEMOPS MOVE instruction

reinforced this pattern and failed to prepare students for the right-to-

left direction of the Pascal assignment statement. The reinforcement of

the intuitive left-to-right pattern undoubtedly hindered students'

ability to write Pascal assignment statements and signaled a major design

flaw in the MEMOPS lesson. In general, when designing models and

simulations, one must be very careful not to unwittingly reinforce

intuitive patterns that are contradictory to those of the domain under

investigation that will later be encountered.

Usefulness of programming histories in studying programming behavior

The performance protocols that were developed from the initial

solution attempts, online programming histories, and final solution

attempts were useful in documenting aspects of programming behavior that

might have otherwise been difficult to study. Had comparisons of

programming performance been based on posttest scores rather than

individually documented solution features, the effects of the MEMOPS

lesson on algorithm implementation may not have been as transparent.

Although not utilized as extensively in protocol documentation as had

originally been planned, the online programming histories were beneficial

in studying several aspects of programming behavior.

www.manaraa.com

126

First, the online histories pointed out the severity of the

assignment direction problem for the treatment novices on the Pascal swap

problem. Recall that only four students wrote initial solution attempts

that exhibited left-to-right assignment. The programming histories,

however, indicated that nine students at one time or another encountered

this problem.

Second, the online histories indicated where students were spending

their programming time. Most notable was the time spent by some students

trying to get their initial solution attempt to compile. Although the

syntax of their code on the initial written effort gave some indication

that compilation would present a problem, the severity of this problem

for these students was even more striking in the compilation histories.

In addition, decoding the compilation messages was apparently a problem

as students often recompiled, code time and again without making any

syntax modifications. Furthermore, correcting a syntax error found at

the beginning of the program did not guarantee that the correction would

be extended to other parts of the code that contained the same error.

Third, the online histories provided additional data that helped the

researcher clarify the algorithm that the student was attempting to

implement. Since several students had never programmed a computer

before, the coding errors made on the written paper solutions sometimes

made it difficult to determine what the student was attempting to do.

This was particularly true for the three-variable sort problem. By

forgetting to insert the statement separators (;) and BEGIN/ENDs in the

IF statements, it was often initially difficult to decipher the student's

www.manaraa.com

127

algorithm. However, in studying the histories of the modifications that

students made to their code, the judges were often able to confirm or

dispell some of their suspicions about the student's initial intentions.

Most importantly, the online histories often pointed out the key

difficulties that prevented students from getting their algorithms to

work. For the three-variable sort problem, the complexity of the

"shuffle" algorithm became apparent as the students time and again

successfully resequenced their comparison statements in an effort to

figure out the relationship of the values. In attempting to implement

the selection sort for the ascending sort problem, the difficulty in

resolving the "unordering" predicament caused by an incorrect beginning

index value became clear.

Recommendations

Based upon the tentative findings, the following recommendations are

made:

1. The MEMOPS MOVE instruction should be changed to an instruction

that implements a right-to-left direction of assignment. Two

suggestions are to use either a LOAD or a FILL instruction. In

addition to implementing the correct direction of assignment, the

copy operation that these instructions connote would be more

accurate than the action connoted by the MOVE instruction.

2. If this study is replicated, a panel of more than two judges with

programming instruction experience should be used to 1) establish

classification guidelines regarding the solution features that

www.manaraa.com

128

are to be documented, 2) review those instances of behavior that

are particularly difficult to classify to ensure consistency and

3) determine which characteristics reflect the acquisition of

critical programming knowledge.

3. The MEMOPS and MINIPAS lessons might have been more effective had

they been referred to more extensively during the instructional

presentations. Because scheduling demanded that students from

the two experimental groups attend the same lectures and lab

sessions, the instructor and researcher had to refrain from

making any references to the MEMOPS experience. References to

the visible memory displayed in MINIPAS were kept to a minimum,

since this lesson was designed to reinforce the treatment model.

4. Before attempts are made to replicate this study, the data that

are recorded by the online programming histories should be

rethought. Although viewing the compilation errors that the

student received and seeing how the student responded to these

errors was interesting, it was a time-consuming process.

Efforts could be taken to develop a program such as the BUG

FINDER (Bonar et al., 1982) that could locate the modifica­

tions between versions, thus reducing analysis time and human

processing errors. However, the resources to develop and test

such a program would be significant.

5. Due to the exploratory nature of the present investigation and

the small sample size, the findings are considered to be tenta­

www.manaraa.com

129

tive. Further research that replicates or refutes the findings

of the present investigation should be conducted. In addition,

the effects of the MINIPAS programming environment on novice

programming performance should be studied independently of the

MEMOPS lesson.

Concluding Remarks

Learning to program a computer is a very challenging and complex

activity which appears to defy current instructional methods. It

involves the acquisition of meaningful and nonintuitive information as

well as a high degree of problem solving skill. The computer is a new

learning environment for students in which previous experiences may

provide an inadequate background- It requires a new set of skills and

new ways of introducing those skills in meaningful contexts. Thus,

the computer presents a unique opportunity for the psychologist,

educator, linguist, and computer scientist to study and improve many

facets of human learning and thinking. This opportunity is being

presented at a most opportune time, when old learning theories and

methods are being cast aside and new ones are being sought.

Motivation for studying the learning of computer programming

comes from both inside and outside the discipline. From within the

discipline, societal needs for employees skilled in the various

aspects of information technology are growing rapidly and show strong

indications of continuing to do so. For professionals in other

disciplines, knowledge of human-computer interactions is anticipated

www.manaraa.com

130

to transfer directly to many instructional problems that they face.

Since the computer is both a subject to be studied and an aid in

learning other subjects, its potential as a carrier of instructional

innovations is unmatched. The need for improving instruction in

computer programming and the probability that the knowledge acquired

would have general applicability encouraged this study.

It is hoped that this study will contribute to the improvement of

computer science education as well as the use of computer-based

instructional artifacts in other areas. The major conclusion of this

study is that the type of learning that results from simulations such

as the MEMOES lesson is of a high level. Yet, this learning defies

traditional educational measurement. If this conclusion withstands

the trials of investigation, the efforts will be well rewarded-

www.manaraa.com

131

BIBLIOGRAPHY

Adelson, B. (1981). Problem solving and the development of abstract
categories in programming languages. Memory & Cognition, 9(4),
422-433.

Ahmann, J. S., & Clock, M. (1975). Evaluating pupil growth. Boston:
Allyn and Bacon.

Allen, R. (1982). In B. Shneiderman and A. Badre (Eds.), Directions
in human/computer interaction. Norwood, NJ: Ablex.

Atwood, M., & Ramsey, H. (1978). Cognitive structures in the
comprehension and memory of computer programs : An investigation of
computer degubbing (Technical Report TR-78-A21). Alexandria, VA:
U.S. Army Research Institute for the Behavioral and Social
Sciences.

Ausubel, D. (1968). Educational psychology: A cognitive view. New
York: Holt, Rinehart, and Winston.

Ausubel, D. (1977). The facilitation of meaningful verbal learning
in the classroom. Educational Psychologist, 12, 162-178.

Barnes, B., & Clawson, E. (1975). Do advance organizers facilitate
learning? Recommendations for further research based on an
analysis of 32 studies. Review of Educational Research, 45,
637-659.

Barr, A., Beard, M., & Atkinson, R. (1976). The computer as a
tutorial laboratory: The Stanford BIP project. International
Journal of Man-Machine Studies, 8, 567-596.

Bayman, P., & Mayer, R. (1983). A diagnosis of beginning
programmers' misconceptions of BASIC programming statements.
Communications of the ACM, ̂ (9), 677-679.

Bok, D. (1985). Looking into education's high-tech future. Educom
Bulletin, 20(3), 2-10, 17.

Bonar, J., Ehrlich, K., Soloway, E., & Rubin, E. (1982). Collecting
and analyzing on-line protocols from novice programmers. Behavior
Research Methods & Instruction, M(2), 203-209.

Bonar, J., & Soloway, E. (1983). Uncovering principles of novice
programming. ACM Conference Record of the Tenth Annual ACM
Symposium on Principles of Programming Languages, (pp. 10-13). New
York: Association of Computing Machinery.

www.manaraa.com

132

Bonham, G. (1983). Computer mania: Academe's inadequate response to
the implications of the new technology [Letter to the Editor].
Chronicle of Higher Education, 26(5), 72-73.

Branch, R. (1973). The interaction of cognitive style with the
instructional variables of sequencing and manipulation to effect
achievement of elementary mathematics. Dissertation Abstracts
International, 34, 4857A. (University Microfilms No. 74-2244).

Bransford, J. (1979). Human cognition. Monterey, CA: Wadsworth.

Brooks, R. (1977). Towards a theory of the cognitive processes in
computer programming. International Journal of Man-Machine
Studies, 9, 737-751.

Brooks, R. (1980). Studying programmer behavior experimentally: The
problems of proper methodology. Communications of the ACM, 23(4),
207-213.

Brownell, W., & Moser, H. (1949). Meaningful vs. mechanical
learning: A study in grade III subtractionn. Duke University
Research Studies in Education, 8, 1-207.

Bruner, J. (1960). The process of education. New York: Vintage
Books.

Bruner, J. (1965). Toward a theory of instruction. Cambridge, MA:
Harvard University Press.

Bruner, J. (1973). Beyond the information given. New York: Norton.

Bruner, J. (1985). Models of the learner. Educational Researcher,
(̂6), 5-8.

Chase, W., & Simon, H. (1973). Perception in chess. Cognitive
Psychology, 4, 55-81.

Clark, R. (1985a). Confounding in educational computing research.
Journal of Educational Computing Research, 1(.2), 137-148.

Clark, R. (1985b). The importance of treatment explication: A reply
to J. Kulik, C-L. Kulik and R. Bangert-Drowns. Journal of
Educational Computing Research, ̂ (4), 389-394-

Coombs, M., Gibson, R., & Alty, J. (1982). Learning a first computer
language: Strategies for making sense. International Journal of
Man-Machine Studies, 16, 449-486.

www.manaraa.com

133

Dalbey, J., & Linn, M. (1985). The demands and requirements of
computer programming: A literature review. Journal of Educational
Computing Research, 1̂ 3), 253-274.

Dijkstra, E. (1976). A discipline of programming. Englewood Cliffs,
NJ: Prentice-Hall.

Du Boulay, B. (1986). Some difficulties of learning to program.
Journal of Educational Computing Research, 2(1), 57-73.

Du Boulay, B., and O'Shea, T. (1981). Teaching novices programming.
In M. Coombs and J. Alty (Eds.), Computing skills and the user
interface. London: Academic Press.

Du Boulay, B., O'Shea, T., & Monk, J. (1981). The black box inside
the glass box: Presenting computing concepts to novices.
International Journal of Man-Machine Studies, 14, 237-249.

Famham-Diggory, S. (1972). Cognitive processes in education: A
psychological preparation for teaching and curriculum development.
New York: Harper and Row.

Fletcher, J., & Atkinson, R. (1972). An evaluation of the Stanford
CAI Program in initial reading. Journal of Educational Psychology,
63, 597-602.

Gannon, J. (1976). An experiment for the evaluation of language
features. International Journal of Man-Machine Studies, 8, 61-73.

Gould, J. (1975). Some psychological evidence on how people debug
computer programs. International Journal of Man-Machine Studies,
7, 151-182.

Grant, E., & Sackman, H. (1967). An exploratory investigation of
programmer performance under on-line and off-line conditions. IEEE
Transactions on Human Factors in Electronics, 8(1), 33-48.

Green, C., & Barstow, D. (1978). On program synthesis knowledge.
Artificial Intelligence, 10, 241-279.

Green, T. (1977). Conditional program statements and their
comprehensibility to professional programmers. Journal of
Occupational Psychology, 50, 93-109.

Hartley, J., & Davies, I. (1976). Preinstructional strategies: The
role of pretests, behavioral objectives, overviews, and advance
organizers. Review of Educational Research, 46, 239-265.

www.manaraa.com

134

Jeffries, R. (1982). A comparison of debugging behavior of expert
and novice programmers. Paper presented at the Annual meeting of
the American Educational Research Association, New York.

Kearsley, G. (1977). Some conceptual issues in computer-assisted
instruction. Journal of Computer-Based Instruction, 4(1), 8-16.

Kulik, J., Kulik, C., & Bangert-Drowns, R. (1985). The importance of
outcome studies : A reply to Clark. Journal of Educational
Computing Research, ̂ (4), 381-387.

Larkin, J., McDermott, J., Simon, D., & Simon, H. (1980). Expert and
novice performance in solving physics problems. Science, 208,
1335-1342.

Lesh, R. (1976). The influence of an advanced organizer on two types
of instructional units about finite geometries. Journal for
Research in Mathematics Education, 7(2), 82-86.

Love, L. (1977). Relating individual differences in computer
programming performance to human information processing abilities.
Dissertation Abstracts International, 38, 1443B. (University
Microfilms No. 77-18,379)

Lucas, H., & Kaplan, R. (1976). A structured programming experiment.
Computing Journal, 19, 136-138.

Mayer, R. (1975). Different problem-solving competencies established
in learning computer programming with and without meaningful
models. Journal of Educational Psychology, ̂ (6), 725-734.

Mayer, R. (1979a). Can advance organizers influence meaningful
learning? Review of Educational Research, ̂ (2), 371-383.

Mayer, R. (1979b). A psychology of learning BASIC. Communications
of 22(11), 589-593.

Mayer, R. (1981). The psychology of how novices learn computer
programming. Computing Surveys, ̂ (1), 121-141.

Mayer, R. (1982). Contributions of cognitive science and related
research in learning to the design of computer literacy curricula.
In R. Seidel, R. Anderson, and B. Hunter (Eds.), Computer literacy.
New York: Academic Press.

McKeithen, K., Reitman, J., Rueter, H., & Hirtle, S. (1981).
Knowledge organization and skill differences in computer
programmers. Cognitive Psychology, 13, 307-325.

www.manaraa.com

135

Miller, L. (1974). Programming by non-programmers. International
Journal of Man-Machine Studies, 6, 237-250.

Novak, J. (1977). A theory of education. Ithaca, NY: Cornell
University Press.

Papert, S. (1981). Mindstorms: Children, computers and powerful
ideas. New York: Basic Books.

Pea, D., & Kurland, D. (1984). On the cognitive effects of learning
computer programming: A critical look. New Ideas in Psychology,
2(2), 137-158.

Perkins, D., Hancock, C., Hobbs, R., Martin, F., & Simmons, R-
(1985). Conditions of learning in novice programmers. Journal of
Educational Computing Research, 2(1), 37-55.

Resnick, L., & Ford, S. (1980). The psychology of mathematics
learning. Hillsdale, NJ: Erlbaum.

Scandura, J., & Wells, J. (1957). Advance organizers in learning
abstract mathematics. American Education Research Journal, 4,
295-301.

Sheil, B. (1981). The psychological study of programming. Computing
Surveys, ̂ (1), 101-120.

Sheil, B. (1982). Coping with complexity. In R. Kasschau, R.
Lachman, and K. Laughery (Eds.), Information technology and
psychology: Prospects for the future. New York: Praeger.

Sheppard, S., Curtis, B., Milliman, P., & Love, T. (1979). Modern
coding practices and programmer performance. Computer, 12, 41-49.

Shneiderman, B. (1975). Exploratory experiments in programmer
behavior. International Journal of Computer and Information
Sciences, 5(2), 123-143.

Shneiderman, B. (1980). Software psychology: Human factors in
computer and information systems. Cambridge, MA: Winthrop.

Shneiderman, B., & Mayer, R. (1979). Syntactic/semantic interactions
in programmer behavior: A model and experimental results.
International Journal of Computer and Information Sciences, 8(3),
219-238.

Shneiderman, B., Mayer, R., McKay, D., & Heller, P. (1977).
Experimental investigations of the utility of detailed flowcharts
in programming. Communications of the ACM, 20, 373-381.

www.manaraa.com

136

Siegler, R. (1983a). Five generalizations about cognitive
development. American Psychologist, 38(3), 263-277.

Siegler, R. (1983b). How knowledge influences learning- American
Scientist, 71, 631-638.

Sime, M., Green, T., & Guest, D. (1977). Scope marking in computer
conditionals - A psychological evaluation. International Journal
of Man-Machine Studies, 9, 107-118.

Smith, J., & Hehusius, L. (1986). Closing down the conversation:
The end of the quantitative-qualitative debate among educational
inquiries. Educational Researcher, ̂ (6), 4-12.

Solomon, G., & Gardner, H. (1986). The computer as educator:
Lessons from television research. Educational Research, 15(6),
13-19.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982). What do
novices know about programming? In B. Shneiderman and A. Badre
(Eds.), Directions in human-computer interactions. Norwood, NJ:
Ablex.

Soloway, E., Bonar, E., & Ehrlich, K- (1983). Cognitive strategies
and looping constructs: An empirical study. Communications of the
ACM, 26(11), 853-850.

Sternberg, R. (1986). Inside intelligence. American Scientist, 74,
137-143.

Weinberg, G. (1971). The psychology of computer programming. New
York: Van Nostrand Reinhold Company.

Weiser, M. (1982). Programmers use slices when debugging.
Communications of the ACM, ̂ (7), 446-452.

Weissman, L. (1977). A methodology for studying the psychological
complexity of computer programs. Dissertation Abstracts
International, 37, 6233B.

West, L., & Fensham, D. (1976). Prior knowledge or advance
organizers as effective variables in chemistry learning. Journal
of Research in Science Teaching, 13, 297-306.

White, B. (1984). Designing computer games to help physics students
understand Newton's laws of motion. Cognition and Instruction,
1(1), 69-108.

Wiedenbeck, S. (1985). Novice/expert differences in programming
skills. International Journal of Man-Machine Studies, 23, 383-390.

www.manaraa.com

137

Wittrock, M. (1966). The learning by discovery hypothesis. In L.
Shulman and E. Keislar (Eds.), Learning by discovery; A critical
appraisal. Chicago: Rand McNally.

Youngs, E. (1974). Human errors in programming. International
Journal of Man-Machine Studies, 6, 361-376.

www.manaraa.com

138

ACKNOWLEDGEMENTS

This study was reviewed and approved by the Iowa State Committee

on the Use of Human Subjects.

A great many people helped to make this dissertation possible,

and I would now like to thank a few of them. First and foremost. Dr.

Rex Thomas for his guidance and nurturing throughout the writing of

this dissertation. Second, Dr. Pete Boysen for making MINIPAS a

reality. Third, the other members of my committee who have provided

me with encouragement and words of wisdom at various times; Dr.

Maribeth Henney, Dr. Cheryl Hausafus, Dr. William Miller, and Dr.

Michael Simonson.

I am also indebted to the instructor, Warner Smidt, and the

students who participated in this investigation- Gratitude is also

extended to Bill Nimtz and his computer science students for helping

to pilot test the MEMOES and the MINIPAS lessons.

Finally, I would like to thank my husband, Steven, whose faith in

my abilities and tireless support sustained me during the frustrating

times.

www.manaraa.com

139

APPENDIX A: QUESTIONNAIRE AND MATCHING CRITERIA RESin.TS

www.manaraa.com

140

To AU Industrial Education 216 Students:

This semester you will be using some new instructional computing
materials to learn about computers and computer programming. These
materials were developed to help alleviate some of the problems and
misconceptions that previous students have encountered. From time to
time we will solicit your reactions to these materials.

The information requested on the attached questionnaire will be
used to learn, more about the background of students enrolling in
introductory programming courses such as this one. It will also help
us analyze any reactions you may have to the new instructional materials
that you will be using. This information and any other data that are
collected from you will be kept strictly confidential.

Thank you for your cooperation.

www.manaraa.com

141

Note: All information provided on this questionnaire will be kept in strict
confidence and will have no bearing in determining your course grade.

Name Social Security No.

Age Sex Year in College

Major

1. What high school computer science courses have you taken? (Please describe
the major activities of each.)

2. What college computer science courses have you taken? (Please describe the
major topics covered in each course.)

3. What other experience have you had with computers? (List any course-related
or job-related activities such as use of a statistical package for a
statistics course, word-processor for writing papers, etc.).

4. If you have computer programming experience, please check all languages in
which you have written programs.

BASIC Pascal FORTRAN COBAL PL/1

C LOGO Others (Specify:)

5. Is there a microcomputer available for your use in your home? yes

6. Place a check beside all of the mathematics courses you took in grades 9-12.

Algebra I Algebra II Geometry Calculus

General Business Trigonometry
Mathematics Mathematics

Other (Specify)

www.manaraa.com

142

7. Please list all of the mathematics courses you have taken in college.

8. Place a check beside your college GPA.

3.5 to 4.0 2.0 to 2.49

3.0 to 3.49 1.5 to 1.99

2.5 to 2.99 Below 1.5

9. What grade do you expect to receive in this course (I ED 216)? Check only
cne.

A B C D F

10. Briefly state why you are taking Industrial Education 216.

www.manaraa.com

143

TABLE A-1. Distribution of students who took a high
school computing course by experimental
group

Category

Experimental Groups

Control
(n=18)

Treatment
(n=18)

No course 10

Took a course 8

Chi-square = .48 Significance = .49

13

5

TABLE A-2. Distribution of students who had
previously taken a college computing
course by experimental group

Experimental Groups

Category Control Treatment
(n=18) (n=18)

No previous course 8 7

Computer literacy 1 3

Programming 9 8

Chi-square = 1.13 Significance = .57

www.manaraa.com

144

TABLE A-3. Distribution of students by ê erimental
group and computing experience other than
programming (word processing, drafting,
statistical analysis)

Experimental Groups

Category Control Treatment
(n=18) (n=18)

No experience 9 13

Experience 9 5

Chi-square = 1.05 Significance = .17

TABLE A-4. Distribution of students by experimental
group and highest level programming
language used in writing computer
programs

Experimental Groups

Category Control Treatment
(n=18) (n=18)

None 7 7

BASIC/LOGO 3 3

FORTRAN 4 6

Pascal/PLl/Cobol 4 2

Chi-square = 1.07 Significance = .79

www.manaraa.com

145

TABLE A-5. Distribution of students by experimental
group and highest level mathematics
courses taken in college

Category

Experimental Groups

Control
(n=18)

Treatment
(n=18)

Algebra/Trigonometry 5
or Business Math.

Calculus 13

Chi-square = 0.00 Significance = 1.00

14

TABLE A-6. Distribution of students by experimental
group and college grade point average

Experimental Groups

Category Control Treatment
(n=18) (n=18)

Less than 2.50 12 10

2.50 - 3.0 3 6

Greater than 3.00 3 2

Chi-square = 1.38 Significance = .51

www.manaraa.com

146

TABLE A-7. Distribution of students by experimental
group and expected course grade

Experimental Groups

Category Control Treatment
(n=18) (n=18)

A 5 3

B 10 14

C 3 1

Chi-square =2.17 Significance = .34

www.manaraa.com

147

APPENDIX B: MEMOPS PROTOCOLS

www.manaraa.com

148

Explanation of Initial Problem States for MEMOPS Sorting Tasks

The computer randomly generated the original values for the

arrays of the MEMOPS sorting tasks. Therefore, the number of values

initially out of order was not consistent for all students. Since the

different states could potentially influence the solutions generated

by the students, all possible problem-states were identified and

documented in the MEMOPS protocols. (See solution feature 1 for Tasks

4, 5, 8, and 9 in Tables B-1 and B-2.)

The seven possible initial states are displayed below. Each

state is defined by two characteristics, the number of values that are

out of order and the relationships between the initial positions of

the values and their final positions.

(1) (2) (3) (4)
2 cell 3 cell 2-2 cell
problem problem problem

1 2 2 2
2 1 5 1
3 3 3 3
4 4 4 5
5 5 14

(in order) (2 cells out (3 cells out (4 cells out
of order) of order) of order)

(5) (5) (7)
4 cell 3-2 cell 5 cell
problem problem problem

5 3 3
11 1
3 2 4
2 5 5
4 4 2

(4 cells out (5 cells out (5 cells out
of order) of order) of order)

www.manaraa.com

149

Table B-1. Treatment group protocols for the visible MEMOPS tasks

Solution features

ID EXP
Restarts Task 3 Task 4

ID EXP n Tasks 1 2 1 2

TOI 0 3 3,4,5 + Z 2 +

T02 0 1 3 + Z 3-2 4-
T03 0 4 3,4,5 + Z 5 +

T04 0 0 z 2-2 -

T05 0 2 3,4 + z 3-2 4-
T06 0 2 3,5 + z 4 +

T07 0 3 4 + 4 +

T08 B 1 3 + X[3] 5 +

T09 B 2 3,4 - Z 5 4-
TIO B 4 3 — X[3] 2-2 -r

Til F 1 4 X[33,X[4] 4 -

T12 F 0 Z 5 -r
T13 F 1 4 X[3] 5
T14 F 2 2,4 X[3] 2-2 +

T15 F 2 1,3 - X[3] 2 +

T16 F 0 X[3] 4 -

T17 P 0 X[3] 5 4- •
T18 P 0 X[3] 5 1

(0 none, B BASIC/LOGO- F FORTRAN, P Pascal)
ID Student identifier
EXP Programming experience
Restart Features :

n Total number of restarts for the visible tasks
Tasks (1 Move smallest, 2 Move largest, 3 Swap, 4 Ascending sort, 5 Descending sorti

Task 3 Solution Features:
1 Swap error (+ MOVE X[l] to X[2], MOVE X[2] to X[l] ; - MOVE X[l] to X[2])
2 Memory cells used for preserving values

Task 4 and Task 5 Solution Features:
1 Initial problem state (see preliminary appendix material)
2 Sequential filling technique (+ used, - not used)
3 Swapping technique (see Figure ID

www.manaraa.com

www.manaraa.com

res
Task 4 Task 5

2 3 1 2 3

+ 2 3 3
+ 3-2 2-2 + 2-2
+ 2-2-3 5 + 5
- 2-2 2-2 + 2-2
+ 3-2 3-2 + 3-2
+ 4 4 + 4
+ 4 5 + 2-4

+ 5 2-2 + 4
+ 5 2-2 + 2-2
+ 2-2 3-2 - 3-2

_ 4 3 — 3
+ 5 3-2 - 3-2
+ 5 (given in order)

- + 2-2 3 + 3
+ 2 4 + 4
- 4 4 + 4

+ 2-2-2-2 2-2 + 2-2
- 5 4 + 4

ng sort)

www.manaraa.com

www.manaraa.com

150

Table B-2, Treatment group protocols for the hidden MEMOPS tasks

Solution features
Restcurts Task 8 _

ID EXP n Tasks 1 2 3 4 5 6 1

TOI 0 6 6,8,9 2-2 CM - - + 2-2 i
T02 0 2 8,9 4 CM + + - 4 3-2
T03 0 3 9 3-2 CM - + + 3-2 4
T04 00 2CM- + +2 2
TOS 01 6 2CM- + + 2 4
T06 0 0 2-2 CM + + +' 2-2 3-2
TO? 01 8 4CM--+4 4

T08 BO 4 CM/CM + + + 3-2 4
T09 BO 5 CM/CM + + + . 5 2
TIO B 5 7,8 4 CM - - + 4 3-2

Til F 3 8,9 4 CM - - + 4 3
T12 F 0 3-2 CM - + + 5-2 2
T13 F 0 5 CM/CM + + + 2-2-2-2 3
T14 F 0 3CM- + +3 4
TIS F 2 8,9 4 CM - + + 4 4
Tie F 0 5CM+ + +5 5

T17 PO 2CM+ + +2 2- 2
T18 Pi 8 4 CM/CM + + - 2-2-2 4

ID Student identifier
EXP Programming experience (0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Restart Features:

n Total number of restarts for the hidden tasks
Tasks (6 Move smallest, 7 Move largest, 8 Ascending sort, 9 Descending sort)

Task 8 and Task 9 Solution Features:
1 Initial problem state (see preliminary appendix material)
2 Sequencing of COMPARES and MOVES

(CM COMPARES all, MOVES all; CM/CM MOVES interspersed between COMPARES; M MCVEs
3 Keeps-best technique (+ used, - not used)
4 Closure (+ attained, - not attained)
5 Sequential filling technique (+ used, - not used)
6 Swapping technique (see Figure 11)

www.manaraa.com

www.manaraa.com

1
Task 9

2 3 4 5 6

4
3-2
4
2
4
3-2
4

4
2
3-2

3
2
3
4
4
5

2-2

! L

M - -
CM + +
CM - +
CM - +
CM - +
CM + +
CM - -

CM/CM + +
CM/CM + +
M/CM - +

CM -
CM + +
CM/CM + +
CM - +
CM - +
CM + +

CM/CM + +
CM/CM + +

4
+ 5
+ 3-2
+ 2
+ 4
+ 4-2
+ 4

+ 2-3
+ 2
+ 5

+ 3
+ 2
+ 2-2

+ 4
+ 4

5

+ 2-2-2

2—2—2—2—2

M MOVES only)

www.manaraa.com

www.manaraa.com

151

APPENDIX C: POSTTEST 1 AND POSTTEST 1 PROTOCOLS

www.manaraa.com

152

Name SS #

PROBLEM I. Part A:

Part of a Pascal program that swaps the values of variables
A and B is shown below. Complete the program by adding the
necessary Pascal statements. You should not need to declare
any other variables or insert any other READLN or WRITELN
statements to complete the program.

Program Probleml (Input,Output);
Var a,b,c,d : Integer;
Begi n

Writeln ('Enter a whole number;');
Readln (a);
Writeln ('Enter another number:');
Readln (b);
(* Add your code below to perform the swap.*)

Writeln ('The new value for a is ',a);
Writeln ('The new value for b is ',b)

End.

PROBLEM 1. Part B;
Once you are satisfied with your answer above, logon to
a VAX. At the $ prompt type PROBl. You will automatically
enter the MINIPAS program. Select the WRITE PROGRAMS option
from the menu. A reasonable facsimile of the above program
will appear. Insert your code (the SAME statements that
you have written above) into the program. Ask a monitor to
verify that you have done this and then proceed to compile,
run, and edit your program as necessary until you're satisfied
that you have a program that solves the given problem. Exit
MINIPAS. When the $ prompt appears turn in this problem
sheet and get the problem sheet for the second problem.

www.manaraa.com

153

Name SS #

PROBLEM 2. Part A:

Part of a Pascal program that requests the user to enter
three numbers in any order and then sorts these numbers
from SMALLEST to LARGEST is shown below. Complete the
program by adding the necessary Pascal statements.
Remember, the program should store the numbers in what­
ever order they are entered and then reorder them so
that the number with the smallest value is in variable A
and the number with the largest value is in variable C.

Program Problem2 (Input,Output);
Var a,b,c,d : Integer;
Begin

Writeln ('Enter 3 numbers:');
Readln (a,b,c);

Write ('The ordered values from smallest ');
Writeln ('to largest are ',a,b,c)

End.

PROBLEM 2. Part B;
At the $ prompt type PR0B2. You will automatically enter
the MINIPAS program. Select the WRITE PROGRAMS option
from the menu. A reasonable facsimile of the above program
will appear. Insert your code (the SAME statements that
you wrote above) into the program. Ask a monitor to verify
that you have done this and then proceed to compile, run
and edit your program as necessary until you are satisfied
that you have a program that solves the given problem.
Exit MINIPAS and logoff VAX. Turn in your username and
this problem sheet.

www.manaraa.com

154

Table C-1. Treatment group protocols for the swap problem

ID EXP
Initial solution

Features
MINIPAS

TOI
T02
TO 3
T04
T05
T06
T07

0
0
0
0
0
0
0

+
+
+
+

P
P
P
P
M
M
PM

0
2
0
2
1
2
2

I

I

1
2
7
1
1
8
3

10
4
7
1
6
3
4

10
3
0
1
4
2
2

T08
T09
TIO

B
B
B

+
+

P
M
P

2
1
2

W 3
10
3

4
15
8

2
4

Til
T12
T13
T14
T15
T16

F
F
F
F
F
F

+

+

+
+
+
+

PM
P
P
P
P
P

2
2
2
1
2
2

R/Wfl

10
1
5
1
17
1

11
1
5
1
17
1

2
1
1

2
1
1

T17
T18

P
P

+
+

+

+
P
P

1
1

1
2

1
2

1
1

ID Student identifier
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Initial Solution Features :

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Type of statements (P Pascal, M MEMOPS, PM both)
4 Number of memory cells used to preserve values
5 Unnecessary code (I IFs, R READLNs, W WRITELNs)
5 WRONG-WAY assignment error

MINIPAS History Fea
1 Number of ir.
2 Number of tota
3 Number of ur.iq
4 Programming ?r

(A syr.zay.
D ordering

5 Completion tim
Final Solution Feat
1 Syntax ard log
2 Logic only !-r
3 Number of

www.manaraa.com

www.manaraa.com

INIPAS history Final solution
3 4 5 1 2 3

10 B,D 36.37 + + 2
3 B 13.50 + + 2
0 A,C - - - 2
1 4.27 + + 2
4 D,B 32.70 + + 2
2 A,B - - + 2
2 B 14.25 + + 2

2 B 16.72 + + 2
4 A,B 28.17 + + 2
6 B 35-38 + + 2

2 A,B 17.68 + + 2
1 2.80 + + 2
1 A 11.80 + + 2
1 2.47 + + 1
1 A,C 33.09 + + 2
1 5.37 + + 2

1 6.35 + + 1
1 2.83 + + 1

:tory Features:
of initial congélations

: of total conç)iiations
of unique program versions

anming Problems :
syntax, B WRONG-WAY assignment, C logic,
ordering, E error A=B, B=A)
îtion time (in minutes)
tion Features:
X and logic (+ correct, - incorrect)
only (+ correct, - incorrect)
r of memory cells used to preserve values

www.manaraa.com

www.manaraa.com

155

Table C-2. Control group protocols for the swap problem

Features
Initial solution MINIPAS histe

ID EXP 1 2 3 4 5 6 1 2 3

COl 0 -r P 2 T_ 1 1
002 0 - P 0 I 20 20 0 1
COS 0 + P 2 S 6 1 1
C04 0 - P 0 I 23 23 0 AJ
COS 0 - P 2 R + 4 10 5 A,I
C06 0 + P 2 + 3 4 2
C07 0 - P 2 I S 15 9 J

COS B — P 2 16 - 27 6 A,
C09 B + + P 2 1 1 1
CIO B + + P 2 1 1 1

Cll F + P 2 2 2 1
C12 F + + P 2 1 1 1
C13 F + P 2 + 2 3 2
C14 F + + P 1 2 2 1

CIS P + + P 2 2 2 1
C16 P + + P 1 2 2 1
C17 P + + ? 2 6 6 1
CIS P + + P 2 1 1 1 B

ID Student identifier MINIPAS History F#
EXP Programming experience 1 Nimiber of in#
(0 none, B BASIC/IOGO, F FORTRAN, P Pascal) 2 Number cf rolB

Initial Solution Features: 3 Number of un:
1 Syntax and logic (+ correct, - incorrect) 4 PrograiTu-iir.g T
2 Logic only (+ correct. - incorrect) (A SYNTAX
3 Type of statements (P Pascal, M MEMOPS, PM both) D orderii
4 Number of memory cells used to preserve values 5 Completion t:
5 Unnecessary code (I IFs , R READLNs, W WRITELNs) Final Solutio:. re<
6 WRONG-WAY assignment error 1 Syntax an- 1<

2 Logic only (•
3 Number of nei

www.manaraa.com

www.manaraa.com

s history
4 5

Final solution
12 3

9.05
A,C
A 12-83

A,C,D,E
A,B,C,D,E 47.18

B 6.70
A,B,D —

A,C,D,E
2.18
3.93

6-77
2.85

B 9-25
3.75

+ + 2
— — 0

+ + 2
— — 0

+ + 2
+ + 2
— — 2

— — 0

+ + 2
+ + 2

+ + 2
+ + 2
+ + 2
+ + 1

4.58 + + 2
8.55 + + 1
8.00 + + 2
6.10 + + 2

•Story Features :
r of initial compilations
r of total compilations
ir of unique program versions
•amming problems:
L syntax, B WKONG-WAY assignment, C logic,
) ordering, E error A=B, B=A)
Letion time (in minutes)
ition Features:
IX and logic {+ correct, - incorrect)
: only (+ correct, - incorrect)
;r of memory cells used to preserve values

www.manaraa.com

www.manaraa.com

156

Table C-3. Treatment group protocols for the three-variable sort problem

Features
Initial solution MINIPAS history

ID EXP 1 2 3 4 5 6 7 1 2 3 4 5

TOI 0 0 + + 0 1 8 2 A _

T02 0 - - 3 + - + CI 4 16 8 B,C,D -

T03 0 - - 0 0 - - CI 14 14 1 A -

T04 0 - - 3 + - + CI 4 10 2. B,D 74.80
T05 0 - - 2 0 - - SI 20 20 1 B,C,* -

T06 0 - - 0 0 - + SI 0 0 0 -

T07 0 — - 3 - - + SI 7 12 6 D -

T08 B — — 3 + — + CI 7 57 4 • B,C,D -

T09 B - - 3 + - + SI 3 12 3 B,C -

TIO B - - 1 + + + CI 1 12 1 B -

Til F — — 3 + — + CI 5 10 5 B,C,D -

T12 F - - 1 + + + CI 4 7 3 B 52.68
T13 F - + 1 + + + CI 1 2 2 B 22.05

T14 F - - 3 + - + CI 2 8 6 • C -

T15 F - - 3 + - + SI 2 2 0 A -

T16 F - — 1 + + + CI 3 11 2 B 61.28

T17 P + + 1 + + + CI 1 1 1 17.33
T18 P + + 1 + + + CI 5 5 1 23.14

ID Student identifier MINIPAS History Fe.
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Initial and Final Solution Features :

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Algorithm (0 none, 1 efficient algorithm,

2 isolate all cases, 3 complex shuffle)
4 Knowledge that original values could be destroyed

(0 no indication, + principle was known,
- principle was unknown)

5 Swapping technique (+ exchanges completed,
- exchanges incomplete or not used, * unique behavior)

6 Assignment statements (+ used, - not used)
7 IF statements (0 none, SI single statement in IF,

CI compound statements in IF)
8 Number of test cases code processes correctly (maximum is 6)

1 Number of ini-
2 Number cf tor;
3 Number of unie
4 Prograrmir.g p:

(A IF ?ynti
B IF synt;
C orderinc
D crderir.:
* unic'-e (

5 Completion tii

www.manaraa.com

www.manaraa.com

Final solution
5 1 2 3 4 5 6 7 8

- - - 2 + - + C I 0
- - - 3 + - + S I 0
- - - 0 0 - - S I 0

74.80 + + 3 + - + C I 6
- - - 2 0 - - S I 0
- - - 0 0 - + S I 0
- - - 3 + - + S I 0

_ — 3 + — + C I 1
- - - 3 + - + S I 0
- - - 1 + + + C I 0

_ _ — 3 + — + C I 0
52.88 + + 1 + + + C I 6
22.05 + + 1 + + + C I 6

- - - i + - + C I 4
- - - 3 + - + S I 0

61.28 + + 1 + + + C I 6

17.33 + + 1 + + + C I 6
23.14 + + 1 + + + CI 6

:ory Features:
of initial compilations
of total compilations
of unique program versions
nning problems;
[F syntax - boolean expression,
[F syntax - use of BEGINs/ENDs,
>rdering of swapping values,
>rdering of comparisons,
inique errors)
:ion time (in minutes)

www.manaraa.com

www.manaraa.com

157

Table C—4. Control group protocols for the three-variable sort problem

Features
Initial solution MINIPAS history

ID EXP 1234567 1 23 4

COl 0 - - 2 - - + CI 9 18 9 A,B,C,D -

C02 0 - - 0 0 - + SI 9 10 2 A,* -

C03 0 - - 2 0 * + SI 30 30 0 A,* -

C04 0 - - 0 0 - - SI 17 17 0. A -

COS 0 - - 0 - - + CI 12 12 1 A -

C06 0 - - 2 - - + CI 14 14 0 C,D -

CO? 0 — - 3 + - + SI 1 2 2 D -

COB B — — 2 — — + SI 14 14 0 A,* —

COS B - - 2 - - + CI 3 23 3 A,C,D -

CIO B — — 3 + - + CI 19 21 3 B 75.

Cll F — — 1 + + + CI 1 2 2 B,D —

C12 F - - 2 + + + CI 19 19 1 B 43.
CIS F - - 1 + + + CI 1 8 8 B -

C14 F + + 1 + + + CI 1 1 1 20.(

CIS P — + 3 + — + CI 1 1 1 16.'
C16 P - + 2 + * + CI 2 1 1 * 18."
C17 P - - 1 + + + CI 1 3 3 D 50.:
CIS P - - 3 0 - - SI S 10 3 B,C -

ID Student identifier
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Initial and Final Solution Features:

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Algorithm (0 none, 1 efficient algorithm,

2 isolate all cases, 3 complex shuffle)
4 Knowledge that original values could be destroyed

{0 no indication, + principle was known,
— principle was unknown)

5 Swapping technique (+ exchanges completed,
- exchanges incomplete or not used, * unique behavior)

5 Assignment statements (+ used, - not used)
7 IF statements (0 none, SI single statement in IF,

CI compound statements in IF)
8 Number of test cases code processes correctly (maximum is 6)

MINIPAS History Fe
1 Number of ini
2 Number of tot
3 Number of urJ
4 Prograsvrr.inq x

(A IF synt
B IF synt
C crderir
D orcierir
* unique

5 Complet:or; ti

www.manaraa.com

www.manaraa.com

Final solution
5 1 . 2 3 4 5 6 7 8

- + 1 + + + CI 1
- - 0 - - + CI 0
- - 2 - - + SI 0
- - 0 - - + SI 0
- - 0 - - + SI 0
- - 2 - - + CI 0
- - 2 + + + CI 0

- - - 2 - - + SI 0
- - - 2 + + + CI 1

75.60 + + 3 + - + CI 6

— — + 1 + + + CI 3
43.42 + + 2 + + + CI 6

- - - 1 + + + CI 1
20.62 + + 1 + + + CI 6

16.47 + + 2 + + + CI 6
18-72 + + 2 + * + * 6
50.25 + + 1 + + + CI 6

- . - . 3 • — - + SI 0

tory Features:
of initial compilations
of total compilations
of unicpje program versions
mning problems:
îF syntax - boolean expression,
IF syntax - use of BEGINS/ENDs,
ordering of swapping values,
ordering of comparisons,
anique errors)
tion time (in minutes)

www.manaraa.com

www.manaraa.com

158

APPENDIX D: POSTTEST 2, SCORING PROCEDURE, AND POSTTEST 2 PROTOCOLS

www.manaraa.com

159

Name

1. Assume the following constant declarations have been
made in a Pascal program.

CONST MAX = 20.0 ;
BIGGEST = 10;

Circle the letters of all array declarations appearing
below that are legal i n Pascal.

a. VAR Aarray: Array [0..7] of Char ;

b. VAR Barray: Array C'A'..'Z'] of Real;

c. VAR Carray: Array [1..Max] of Integer;

d. VAR Farray: Array [INTEGER] of 1..7;

e. VAR Garray: Array [1..Z] of Boolean;

2. Assume the following declarations have been made for a
Pascal program.

CONST MAX = 10;
VAR X: Array [1..Max] of Integer;

Y : Array [1..Max] of Real;
I,J: Integer ;

Circle the program segments below that will cause some
type of RUN-TIME error and describe the error that will
be caused.

a. For I

b. For I

c. For I

= 1 to Max Do X[I] ;= XCI] + 1;

= 0 to Max-1 Do XCI+1] := X[I+13 * I;

= 1 to Max Do Y[I] := X[I] * X[I];

d. For I := Max Down to 0 Do
Begin

J := I + 1;
Readln (X[J]);

end ;

www.manaraa.com

160

. What values will be stored in Arrays X and Z after the
following program has been executed? Use the following
data as needed for input data:

4 17 3 2 8 11 10 16 13 99 0 S

Program XXX (input,output);
Const Max = 8 ;
Var J,N,I : Integer;

X ; Array [1..Max] of Integer;
Z ; Array [1..Max] of Integer ;

Begi n
Readln (N);
For I := 1 to N Do Readln (X[I]);
For J := 1 to N Do Readln (Z[J];
I := 1 ;
For J := N Downto 1 Do

Begin
ZCJ] := XCI];
I := I + 1;
End;

End.

What will be stored in Xarray after this program has
finished execution? Use the following data as needed
f o r i n p u t d a t a : 4 8 7 3 2 9 1 0 0 1 6 2 1 8 3

Program AAAA (Input, Output);
Const Max = 8;
Var Xarray ; Array [1..Max] of Integer;

J,N,L : Integer ;

Begin
For J := 1 to Max Do Readln (Xarray[J]);
N : = 7;
For J ;= 1 to N do

Begi n
If J <> N

then Xarray[J] := Xarray[J+l]
else Xarray[J] := Xarray[1];

End;
End.

www.manaraa.com

161

Write Pascal code that will compare the contents of
X[l] to Y[l], X[2] to Y[2], etc. and print out a
message after each comparison stating which one contains
the larger of the two integers stored in each array.
(You may assume that the value in X[I] will never equal
the value in Y[I]). Assume the following declarations
have been made:

Const Max =7;
Var X,Y : Array [1..Max] of Integer ;

I,J,K; Integer ;

Part of a program that will REVERSE the order of the
values stored in array X appears below. (If the values in
X were 2, 4, 9, 10, 16 then the code below would reverse
these values so that X would contain 16, 10, 3, 4, 2.)
Fill in the bounds to the FOR statement that would be
required to perform this reversal and add whatever Pascal
statements are necessary to complete the reversal. You
may use ONLY those constants, arrays, and variables that
have been declared below. You MAY NOT declare any addi­
tional ones. Use your own input data for this problem.

Program Reversem (Input,Output);
Const Max = 10;
Var X : Array [1..10] of Integer ;

I,J,N,R: Integer ;
Begin

For I := 1 to Max do Readln (X[I]);
For I := to Do

Begin
(* Add statements needed to complete REVERSAL below*)

End;
End.

www.manaraa.com

162

7. Write a Pascal program that will put the values stored
in an integer array of size 6 in order such that the
smallest value stored in the array is located in the
first element of the array and the largest value is
located in the last element of the array. You may not
use any constants, arrays, or variables other than those
that have been declared for you in the code shown below.
Use your own input data for this problem.

Program PutlnOrder (input,output);
Const MAX = 6;
Var X : Array [1..6] of Integer;

I,J,Z,R: Integer ;
Begin

For I := 1 to MAX Do Readln (X[I]);

Turn this part of the test in and get the instructions for
the last part of the test.

www.manaraa.com

163

Logon to your VAX account. Type $CAS, select the ASSIGNMENT
option, and run NEWMINI. Enter the code you wrote for problem
7. Raise your hand when you have entered the code so that
either Warner or Lib can check to be sure the same code was
entered. Once this has been verified, you may continue to
work on your solution, testing it and making changes, until
it works properly (or you run out of class time).

www.manaraa.com

164

Scoring Procedure

Problem 1 (5 points)
1 point for each subitem properly marked

Problem 2 (8 points)
1 point for each programming segment properly marked
1 point for each correct error description

Problem 3 (8 points)
8 points if the correct values were specified for elements
1-4 of both arrays, and elements 5-8 were left blank

5 points if only elements 1-4 of both arrays contained
values, but the values were incorrect.

3 points if the values were correctly read into the
arrays originally

Problem 4 (8 points)
8 points if all eight cells contained correct values
6 points if the majority (5 or more) of cells contained the
correct values

2 points if the student read the values in properly before
any other processing occurred

Problem 5 (5 points)
5 points for a syntactically correct solution
4 points for a logically correct solution that contained
syntax errors

2 points if a FOR statement was used properly
2 points if an IF statement and two WRITELNs were used
-1 if output messages failed to state the cell name

Problem 6 (8 points)
7 points if solution was logically correct but contained
syntax errors

5 points if exchanges were correctly performed but
an "out of bound" error could occur due to an incorrect
bound

3 points if student attempted an exchange, but the
exchange contained an error

2 points for correctly identifying bounds, but failing
to attempt an exchange

Problem 7 (15 points)
13 points for logically correct code containing minor

syntax errors
10 points for solutions properly implementing two

nested FOR loops, a single IF statment, value
exchanges, but errors occured in value exchanges

8 points for solutions properly using IF statements

www.manaraa.com

165

and value exchanges, but "out of bound" error
was present, or the student failed to use nested
loops

5 points if student properly performed an exchange only
3 points if IF statement was properly used
1 point added to score if efficient bounds were used

www.manaraa.com

166

Table D-1. Treatment group protocols for the comparison and reversal problems

ID EXP

Solution features
Comparison

4

T02
T03
T04
TO 5

0
0
0
0

+
+
+
+

+
+
+
+

+
+
+
+

+
+
+
+

T09
TIO

B
B

Til
T12
T13
T14
T15
T16

T17
T18

F
F
F
F
F
F

P
P

+
+
+
+

+

+

+
+
+
+

+
+

+
+
+
+
+
+

+
+

+
+
+
+

+
+

+
+
+
+
+
+

+
+

+

+

+

ID Student identifier
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Comparison Features:

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 FOR statement (+ used, - not used)
4 Same index to address both arrays (+ used, - not used)
5 IF statement (+ used, — not used)

Reversal Features:
1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Algorithm (0 not classifiable, S single index, T two-variable)
4 Boundary expressions in FOR (+ correct, - incorrect)
5 Number of memory cells used to preserve values
6 Preservation of values (0 not classifiable, + values preserved, - values lost)

www.manaraa.com

;
i
s
i

www.manaraa.com

+
+

+

+

+

s
s
s
s

0
s

s
s
s
T
T
S

s
T

+

0

+
+

+

+

+

1
1
1
2

0
1

1
1
1
1
0
1

1
1

ost)

www.manaraa.com

www.manaraa.com

167

Table D-2. Control group protocols for the conçarison and reversal problems

Solution features
Comparison

ID EXP 1 2 3 4 5 1 2

C02 0 + + + +

C03 0 - + + - + - -

COS 0 + + + + + - +

COS 0 + + + + + +

COS B — — + + + - -

C09 B + + + + - -

CIO B - + + + + - +

Cll F + + + + + - +

C12 F + + + + + - 4-

C13 F - + + + + - -

C14 F + + + + + + T

CIS P + + + + + - +

C16 P + + + + + - -

C17 P + + + + + + 4-

CIS P - + + - + - -

ID Student identifier
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Comparison Features:

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 FOR statement (+ used, - not used)
4 Same index to address both arrays (+ used, - not used)
5 IF statement {+ used, - not used)

Reversal Features:
1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Algorithm (0 not classifiable, S single index, T two-variable)
4 Boundary expressions in FOR (+ correct, - incorrect)
5 Number of memory cells used to preserve values
6 Preservation of values (0 not classifiable, + values preserved, - values lost)

www.manaraa.com

www.manaraa.com

Reversal
3 4 5 6

S
0
S
S

0
S
T

T
T
T
S

S
S
T
0

+
+

+

+

+

+

0
0
1
1

0
0
2

2
1
2
1

1
2
2
0

+
+

+

+
+
+
+

+
+
+

www.manaraa.com

www.manaraa.com

168

Table D-3. Treatment group protocols for the ascending sort problem

Features
Initial solution MINIPAS history

ID EXP 1 2 3 4 5 6 7 8 9 1 2 3 4 5

T02 0 - + S + + + + + E 2 18 5 A,C,D,E
TO 3 0 ~ — 0 ~ ~ + + - 3 19 7 A,B,C -

T04 0 - + S + + + + E E 1 2 2 * 30.70
T05 0 — — 0 + — + + — 4 6 3 B,C -

T09 B - - B - - + + — 8 10 3 D _

TIO B - - S + + + + E E 1 5 5 B,C -

Til F - + B + + + + E E 3 3 1 . A 10.52

T12 F + + B + + + + E E 1 1 1 14.55
T13 F - + B + + + + - 3 3 1 -

T14 F - - S - + + + + + 2 4 2 E 15.00

T15 F — - 0 — — + + - 8 22 2 A -

T16 F - + S + + + + E E 2 2 2 C 17.23

T17 P + + S + + + + + + 3 3 2 14.31
T18 P - + S + + + + + E .3 5 3 C,D,E 37.26

ID Student identifier MINIPAS History F-
EXP Programming experience 1 Number cf in

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal) 2 Number of to
Initial and Final Solution Features: 3 Number cf •an

1 Syntax and logic (+ correct, - incorrect) 4 Modificati on
2 Logic only (+ correct, - incorrect) (A syr.t ax
3 Algorithm (0 not classifiable, S selection sort. B bubble sort) B addi UJ.
4 Preservation of values (+ values preserved. - values lost) C bou: ds
5 Nested loops (+ used, - not used) D conr cr
6 IF statements (+ used, - not used) E st&\ em
7 Assignment statements (+ used, - not used) " uni^ ue

8 Passes through array (E excessive, + efficient. - not enough) 5 Completior t
9 Comparisons per pass (E excessive, + efficient. - not enough)

www.manaraa.com

www.manaraa.com

Final solution
5 1 2 3 4 5 6 7 8 9

+ B + + + + +
- - - B - + + + E -

30.70 + + S + + + + E +

— — - B + — + + — —

_ — 0 — - + + — —

- - - S + + + + E E

10.52 + + B + + + + E E
14.55 + + B + + + + E E

- - + B + + + + - -

16.00 + + S + + + + + +
- - - S - + + + E E

17-23 + + S + + + + + +

14.31 + + S + + + + + +

37.28 + + s + + + + E +

îistory Features:
jer of initial compilations
fcer of total compilations
aer of unique program versions
Lfications to code:
(A syntax,
B addition or deletion of looping structures,
C bounds on loops,
D comparisons between cells,
E statements in swap code,
* unique changes)
pletion time (in minutes)

www.manaraa.com

www.manaraa.com

169

Table D-4. Control group protocols for the ascending sort problem

Features
Initial solution MINIPAS history

ID EXP 1 2 3 4 S 6 7 8 9 1 2 3 4 5

C02 0 B + + + E E 2 6 5 C,D _

COS 0 - - B - - + + - - 10 12 3 A,C,D,* -

COS 0 - - B + - + + - - 2 5 4 C,B 32.85
C06 0 + + B + + + + E E 2 2 1 10.85

COB B — — 0 — — + + — — 4 14 1 A —

C09 B - - S + - + + - - 3 10 7 B -

CIO B — — 0 + — + + — — 2 7 6 B,* -

Cll F — — S + + + + E E 8 11 3 A,B,D 39.65
C12 F + + B + + + + + E 2 2 1 12.43
C13 F - + B + + + + E E 2 8 2 C -

C14 F - + S + + + + E E 1 1 1 C 9.67

CIS P — + B + + + + E E 3 5 3 C 32.85
C16 P - + S + + + + + E 3 5 2 C 20.75
C17 P - - B + - + + - - 1 1 1 B -

CIS P 0 + + 2 9 4 A,B

ID Student identifier
EXP Programming experience

(0 none, B BASIC/LOGO, F FORTRAN, P Pascal)
Initial and Final Solution Features:

1 Syntax and logic (+ correct, - incorrect)
2 Logic only (+ correct, - incorrect)
3 Algorithm (0 not classifiable, S selection sort, B bubble sort)
4 Preservation of values (+ values preserved, - values lost)
5 Nested loops (+ used, - not used)
6 IF statements (+ used, - not used)
7 Assignment statement (+ used, - not used)
8 Passes through array (E excessive, + efficient, - not enough)

MINIPAS History ?
1 Number of in
2 Number cf to
3 Number of ur.
4 Modification

(A syntax
B additi
C bounds
D cozçar
E staten
* ur ique

5 Completion

www.manaraa.com

www.manaraa.com

Final solution
5 1 2 3 4 5 6 7 8 9

_ B + + + E E
— - - 0 - - + + - -

12-85 + + B + + + + £ E
.0-85 + + B + + + + E E

_ — 0 — - + + - —

— - + S + + + + E E
- - — S + + + + E E

J9.65 + + S + + + + E E

L2.43 + + B + + + + + E
— - + B + + + + E E

9-67 + + S + + + + E E

32-85 + + B + + + + E E
20-75 + + S + + + + + E

— - - B + - + + - -

— - - G G + + + - -

story Features:
r of initial compilations
r of total compilations
r of unique program versions
ications to code:
syntax,
addition or deletion of looping structures,
bounds on loops,

I comparisons between cells,
: statements in swap code,
unique changes)

.etion time (in minutes)

www.manaraa.com

	1986
	Using programming protocols to investigate the effects of manipulative computer models on student learning
	Elizabeth June Bruene Hooper
	Recommended Citation

	tmp.1415211125.pdf.xkAfh

